94 research outputs found

    Computing Large-Scale Matrix and Tensor Decomposition with Structured Factors: A Unified Nonconvex Optimization Perspective

    Full text link
    The proposed article aims at offering a comprehensive tutorial for the computational aspects of structured matrix and tensor factorization. Unlike existing tutorials that mainly focus on {\it algorithmic procedures} for a small set of problems, e.g., nonnegativity or sparsity-constrained factorization, we take a {\it top-down} approach: we start with general optimization theory (e.g., inexact and accelerated block coordinate descent, stochastic optimization, and Gauss-Newton methods) that covers a wide range of factorization problems with diverse constraints and regularization terms of engineering interest. Then, we go `under the hood' to showcase specific algorithm design under these introduced principles. We pay a particular attention to recent algorithmic developments in structured tensor and matrix factorization (e.g., random sketching and adaptive step size based stochastic optimization and structure-exploiting second-order algorithms), which are the state of the art---yet much less touched upon in the literature compared to {\it block coordinate descent} (BCD)-based methods. We expect that the article to have an educational values in the field of structured factorization and hope to stimulate more research in this important and exciting direction.Comment: Final Version; to appear in IEEE Signal Processing Magazine; title revised to comply with the journal's rul

    Nonlinear least squares updating of the canonical polyadic decomposition

    Full text link
    status: publishe

    Tensor Decomposition for EEG Signal Retrieval

    Full text link
    Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic non-negative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    Exploring Numerical Priors for Low-Rank Tensor Completion with Generalized CP Decomposition

    Full text link
    Tensor completion is important to many areas such as computer vision, data analysis, and signal processing. Enforcing low-rank structures on completed tensors, a category of methods known as low-rank tensor completion has recently been studied extensively. While such methods attained great success, none considered exploiting numerical priors of tensor elements. Ignoring numerical priors causes loss of important information regarding the data, and therefore prevents the algorithms from reaching optimal accuracy. This work attempts to construct a new methodological framework called GCDTC (Generalized CP Decomposition Tensor Completion) for leveraging numerical priors and achieving higher accuracy in tensor completion. In this newly introduced framework, a generalized form of CP Decomposition is applied to low-rank tensor completion. This paper also proposes an algorithm known as SPTC (Smooth Poisson Tensor Completion) for nonnegative integer tensor completion as an instantiation of the GCDTC framework. A series of experiments on real-world data indicated that SPTC could produce results superior in completion accuracy to current state-of-the-arts.Comment: 11 pages, 4 figures, 3 pseudocode algorithms, and 1 tabl

    Tensor decomposition for EEG signals retrieval

    Get PDF
    © 2019 IEEE. Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic nonnegative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications
    • …
    corecore