2,712 research outputs found

    Sample and Filter: Nonparametric Scene Parsing via Efficient Filtering

    Get PDF
    Scene parsing has attracted a lot of attention in computer vision. While parametric models have proven effective for this task, they cannot easily incorporate new training data. By contrast, nonparametric approaches, which bypass any learning phase and directly transfer the labels from the training data to the query images, can readily exploit new labeled samples as they become available. Unfortunately, because of the computational cost of their label transfer procedures, state-of-the-art nonparametric methods typically filter out most training images to only keep a few relevant ones to label the query. As such, these methods throw away many images that still contain valuable information and generally obtain an unbalanced set of labeled samples. In this paper, we introduce a nonparametric approach to scene parsing that follows a sample-and-filter strategy. More specifically, we propose to sample labeled superpixels according to an image similarity score, which allows us to obtain a balanced set of samples. We then formulate label transfer as an efficient filtering procedure, which lets us exploit more labeled samples than existing techniques. Our experiments evidence the benefits of our approach over state-of-the-art nonparametric methods on two benchmark datasets.Comment: Please refer to the CVPR-2016 version of this manuscrip

    Adaptive Nonparametric Image Parsing

    Get PDF
    In this paper, we present an adaptive nonparametric solution to the image parsing task, namely annotating each image pixel with its corresponding category label. For a given test image, first, a locality-aware retrieval set is extracted from the training data based on super-pixel matching similarities, which are augmented with feature extraction for better differentiation of local super-pixels. Then, the category of each super-pixel is initialized by the majority vote of the kk-nearest-neighbor super-pixels in the retrieval set. Instead of fixing kk as in traditional non-parametric approaches, here we propose a novel adaptive nonparametric approach which determines the sample-specific k for each test image. In particular, kk is adaptively set to be the number of the fewest nearest super-pixels which the images in the retrieval set can use to get the best category prediction. Finally, the initial super-pixel labels are further refined by contextual smoothing. Extensive experiments on challenging datasets demonstrate the superiority of the new solution over other state-of-the-art nonparametric solutions.Comment: 11 page
    • …
    corecore