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Abstract

Scene parsing has attracted a lot of attention in com-
puter vision. While parametric models have proven effec-
tive for this task, they cannot easily incorporate new train-
ing data. By contrast, nonparametric approaches, which
bypass any learning phase and directly transfer the labels
from the training data to the query images, can readily ex-
ploit new labeled samples as they become available. Un-
fortunately, because of the computational cost of their label
transfer procedures, state-of-the-art nonparametric meth-
ods typically filter out most training images to only keep a
few relevant ones to label the query. As such, these meth-
ods throw away many images that still contain valuable
information and generally obtain an unbalanced set of la-
beled samples. In this paper, we introduce a nonparamet-
ric approach to scene parsing that follows a sample-and-
filter strategy. More specifically, we propose to sample la-
beled superpixels according to an image similarity score,
which allows us to obtain a balanced set of samples. We
then formulate label transfer as an efficient filtering proce-
dure, which lets us exploit more labeled samples than ex-
isting techniques. Our experiments evidence the benefits of
our approach over state-of-the-art nonparametric methods
on two benchmark datasets.

1. Introduction
Scene parsing, also known as semantic segmentation,

tackles the problem of assigning one class label to every
pixel in an image (Fig. 1). The traditional approach to ad-
dressing this problem consists of having a separate training
phase that learns a parametric model, which will then be
applied to the test data [24, 14, 12, 10, 15, 13, 16, 27, 32,
9, 6, 23, 19, 25]. While effective, this approach doesn’t ac-
count for the dynamic nature of our world, where images
are constantly being acquired. Indeed, as new training data
becomes available, these techniques need to re-train their
model. Unfortunately, this process is generally very time-
consuming; for example, training a state-of-the-art Convo-
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Figure 1: Nonparametric Scene Parsing. Top left: Query
image; Top right: Ground-truth; Bottom left: Superpars-
ing [28]; Bottom right: Our method.

lutional Neural Network (CNN) can take several days.
Nonparametric methods have recently emerged as a so-

lution to this drawback [17, 5, 11, 28, 21, 20, 26, 29]. Rather
than training a model, these techniques aim at directly trans-
ferring the semantics of labeled images to the test data. As
such, they can readily incorporate new labeled images as
they become available.

Most nonparametric methods [17, 5, 28, 21, 20, 26, 29]
follow a two-stage procedure: They first retrieve a set of
images similar to the query image, and then transfer the la-
bels of these retrieved images to the query. The retrieval
step plays two important roles. First, it discards the labeled
images that are irrelevant to the query. Second, by reducing
the amount of data to take into account, it effectively speeds
up the transfer step. While the benefits of the former point
are unquestionable, the latter one is somewhat more dubi-
ous and mostly motivated by the relative lack of speed of
the transfer step. Indeed, to remain fast, existing techniques
typically throw away images which might still contain valu-
able information. This particularly causes problems when
the classes are unbalanced, since the less-frequent classes
might easily not even appear in the retrieved images.
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In this paper, we introduce an approach to scene pars-
ing that follows a sample-and-filter strategy. Specifically,
instead of retrieving a fixed number of similar training im-
ages, we randomly sample the labeled superpixels from the
training data according to an image-similarity score. We
then formulate label transfer as a Gaussian filtering proce-
dure, which computes the label of a query superpixel from
the labels of the sampled superpixels. Thanks to the effi-
ciency of our filtering procedure and to our sampling strat-
egy, our approach lets us (i) make use of more labeled super-
pixels than existing retrieval-based techniques; and (ii) ob-
tain a set of labeled samples that is more balanced in terms
of class frequency.

We evaluate our method on two large-scale benchmark
datasets, SIFTFlow [17] and LM-SUN [28]. Our exper-
iments evidence the benefits of our approach in terms of
both accuracy and computation time over state-of-the-art
nonparametric scene parsing techniques.

2. Related Work
In recent years, scene parsing has attracted a lot of at-

tention. In particular, many methods have proposed to
tackle scene parsing by first learning a model from train-
ing data, and then applying this model to the unseen test
data. A popular trend among these methods consists of
learning a pixel classifier and use it as a unary poten-
tial in a Markov Random Field (MRF), which models
the dependencies of the class labels of two or more pix-
els [24, 14, 12, 10, 15, 13, 16]. When it comes to the
classifier itself, several directions have been proposed, such
as boosting-based classifiers [24, 32, 9], or exemplar-based
object detectors [27, 16]. With the recent advent of deep
learning, several works have focused on developing CNNs
to perform semantic segmentation [6, 23, 19, 25]. While
effective, these approaches are parametric, and thus cannot
incorporate new labeled data without a computationally ex-
pensive re-training procedure.

By contrast, nonparametric approaches do not learn any
model, but instead transfer the labels of the training data to
the query images. As a consequence, they can directly in-
corporate new labeled data. To the best of our knowledge,
this idea was first introduced by Liu et al. [17], who made
use of SIFTFlow [18] to transfer the labels from a small set
of retrieved images to the query. Unfortunately, the compu-
tational cost of SIFTFlow significantly affected the speed of
their approach. Instead, in [11], Gould & Zhang built on the
efficient PatchMatch algorithm [3, 4], which allowed them
to bypass the retrieval step and build a graph over the en-
tire training set to perform label transfer. For the algorithm
to remain tractable, however, the degree of the vertices in
the graph had to be kept low, which, in turn, affected the
labeling accuracy.

Superparsing, introduced by Tighe & Lazebnik [28],

probably constitutes the most popular nonparametric ap-
proach to scene parsing. From a set of retrieved images,
it produces a label for each query superpixel by combin-
ing the results of nearest-neighbor retrieval using multiple
superpixel features in a naı̈ve Bayes classifier. Inspired by
[28], Eigen & Fergus [5] and Singh & Kosecka [26] pro-
posed to learn weights for the different superpixel features;
Myeong et al. [20, 21] incorporated pairwise and higher-
order contextual relationships among the object categories
into the Superparsing framework; Tung & Little [29] pro-
posed to reason at the level of complete objects, obtained
by an objectness criterion, instead of relying on superpix-
els. While all these modifications of Superparsing have in-
deed led to higher segmentation accuracy, they also come
at a higher computational cost. Furthermore, and more im-
portantly, all these methods, including Superparsing, make
an initial strong decision to reject a large number of labeled
images, many of which might still contain valuable infor-
mation for the query.

By contrast, here, we introduce a sampling strategy to
collect the relevant labeled superpixels, which lets us re-
trieve a balanced number of samples for each class. Thanks
to this sampling procedure, and to our efficient filtering ap-
proach to label transfer, our algorithm yields accuracies that
are competitive with the state-of-the-art methods, while be-
ing significantly faster.

3. Method
We now introduce our nonparametric approach to scene

parsing. To this end, let X ′ = {x′
1,x

′
2, . . . ,x

′
Nt
} denote

the set of feature vectors x′
j representing the training su-

perpixels, with corresponding ground-truth labels Y′ =
{y′1, y′2, . . . , y′Nt

}, y′i ∈ {1, . . . , L}. Our goal is to trans-
fer these labels to a set of query superpixels encoded by
their feature vectors X = {x1,x2, . . . ,xNq}. As men-
tioned above, here, we follow a sample-and-filter approach,
which first randomly samples a balanced set of relevant
training superpixels, and then performs label transfer via
efficient Gaussian filtering. In the remainder of this section,
we present these two steps in detail.

3.1. Sampling Balanced Superpixels

It is undeniable that, as suggested by other nonparamet-
ric approaches [28, 5, 26, 29], many images from the train-
ing data are irrelevant to label the query image. Follow-
ing this intuition and common practice, we therefore first
rank the training images according to their similarity to the
query image using the method explained in Section 3.1.1.
At this stage, state-of-the-art nonparametric scene parsing
algorithms [28, 5, 26, 29] simply discard the images beyond
a pre-defined rank. This, however, typically discards many
images with relevant information because of noise in the
ranking process and because the pre-defined rank is usually



chosen so as to keep few images. Furthermore, with this
process, the number of retrieved superpixels belonging to
each class is typically unbalanced.

By contrast, here, we propose to make use of the ranks
to randomly sample training superpixels. To this end, we
assign a dissimilarity value

dj ∈
{

1

Nt
,

1

Nt − 1
, . . . , 1

}
(1)

to each training superpixel according to the rank of its cor-
responding image. Note that the superpixels in the image
with the highest rank, i.e., the image most similar to the
query, will be assigned the lowest dissimilarity value. From
these dissimilarity values, we compute a score for each su-
perpixel as

pj = exp

(
−
d2j
σd

)
, ∀ j ∈ {1, 2 . . . , Nt} . (2)

We then use this score to randomly sample the superpixels
using the method proposed in [30]. Ultimately, while su-
perpixels with larger values pj are more likely to be picked,
this still potentially allows any superpixel to be selected.

Furthermore, and more importantly, since we randomly
sample superpixels, and each superpixel is assigned a class
label, we can enforce having a balanced set of training data
by sampling the same number of superpixels for each class.
Note that, in practice, this is not always possible, since
some classes truly occur very rarely in the training data.
This will be addressed in the label transfer step of our ap-
proach. Nevertheless, our sampling procedure produces a
more balanced set of superpixels than the simple image re-
trieval strategy. Furthermore, thanks to our efficient filtering
approach to label transfer, discussed below, we can exploit
more labeled superpixels than state-of-the-art nonparamet-
ric scene parsing techniques.

3.1.1 Image Ranking

As mentioned above, our sampling strategy relies on an im-
age ranking procedure that reflects the similarity between
each training image and the query. This procedure works as
follows. We extract three global image descriptors, i.e., spa-
tial pyramid of color histograms, GIST [22] and Histogram
of Oriented Gradients (HOG) visual words [31], from each
image in the training set and from the query. We then pro-
duce three rankings according to the similarity of each of
these descriptors, using the χ2 distance metric. The final
rank of the images are then obtained by sorting their aver-
age ranks over these three rankings.

3.2. Label Transfer via Efficient Filtering

The sampling procedure of Section 3.1 produces a bal-
anced set ofNs training superpixels encoded by feature vec-

tors {x′
1,x

′
2, . . . ,x

′
Ns
}. Our goal now is to transfer the la-

bels of these superpixels to those of the query image. Here,
we propose to formulate label transfer as an efficient Gaus-
sian filtering operation.

To this end, let q′
j be the L-dimensional binary vector

encoding the label of the jth training superpixel as

q′
j(l) =

{
1 y′j = l

0 otherwise ,
(3)

where q′
j(l) indicates the lth element of q′

j . We then pro-
pose to estimate the label of the query superpixels as

qi =

Ns∑
j=1

k(xi,x
′
j)q

′
j , ∀ i ∈ {1, 2, . . . , Nq} , (4)

where k(xi,x
′
j) is a Gaussian kernel that encodes how sim-

ilar two superpixels are in terms of their feature vectors xi

and x′
j , and thus how strongly we believe that these two su-

perpixels should have the same label. The specific form of
kernel used in our experiments is given in Section 3.2.1.

Since Eq. 4 involves Ns summations for every query su-
perpixel, the total computational complexity for a query im-
age would be O(NsNq). For large numbers of retrieved su-
perpixels, which is what we advocate for here, this approach
would thus be prohibitively costly. However, Eq. 4 corre-
sponds to a Gaussian filtering operation, for which fast and
accurate approximations have been proposed [1, 8, 2]. In
particular, here, we make use of the permutohedral lattice-
based formulation of [1]. This method relies on three steps,
illustrated in Fig. 2. The first step is Splatting, which, in our
case, consists of mapping the training data to the permuto-
hedral lattice and computing the values at the vertices of the
lattice. More specifically, the label vectors of the training
superpixels are soft-assigned to the lattice vertices accord-
ing to the barycentric coordinates of the feature vectors (i.e.,
the value at a vertex is computed as a linear combination of
its surrounding label vectors). In the Blurring step, which
approximates the Gaussian filter locally, Gaussian blurring
is performed on the vertices along each axis of the lattice.
The blurring process is truncated, such that the value at each
vertex is only affected by its direct neighbors. The last step
is Slicing, which, in our case, consists of mapping the query
superpixels to the lattice by computing the barycentric co-
ordinates of their feature vectors. The label of a query point
is obtained as a linear combination of the values at the ver-
tices, using its barycentric coordinates. The first two steps,
which only involve the training data, can be performed in
O(Ns). For each query superpixel, slicing can be done in
constant time, i.e., linearly dependent on the feature dimen-
sion, but not on Ns. Altogether, this therefore yields a total
computational complexity of O(Ns +Nq).
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(c) Slicing

Figure 2: Schematic view of the filtering process on the permutohedral lattice. The block structures represent label
vectors, and the gray-level intensities in each vector denote the likelihoods of different classes. Fig. 2a shows how the binary
label vector q′

j (defined in Eq. 3) is mapped onto the lattice vertices. The blurring step is depicted in Fig. 2b, where Gaussian
blurring is applied locally to the verrtices. Fig. 2c illustrates the slicing step, where a query data receives label information
from the lattice vertices.

3.2.1 Kernels

In this work, we define the kernel of Eq. 4 as

k(xi,x
′
j) = w1k1(xi,x

′
j) + w2k2(xi,x

′
j) , (5)

where k1 and k2 are two Gaussian kernels defined below.
Note that the algorithm described above translates easily to
the two-kernel case by simply making use of two permuto-
hedral lattices, and, for each query superpixel, combining
the two predicted label vectors.

In practice, as a first kernel, we make use of a color-based
Gaussian, expressed as

k1(xi,x
′
j) = exp

(
−
‖ci − c′j‖2

σ2
c

−
|ti − t′j |2

σ2
t

−
|si − s′j |2

σ2
s

−
|di − d′j |2

σ2
d

)
,

(6)

where c is the vector of average RGB intensities of a su-
perpixel, s is the standard deviation of the gray-level inten-
sities in the superpixel, t is the minimum distance of the
superpixel to the top of the image, and d is the dissimilar-
ity value defined in Eq. 1. Note that we set di = 0 for the
query superpixels.

The second kernel relies on the image gradient and is
defined as

k2(xi,x
′
j) = exp

(
−
‖hi − h′

j‖2

σ2
h

−
|ti − t′j |2

σ2
t

−
|si − s′j |2

σ2
s

−
|di − d′j |2

σ2
d

)
,

(7)

where h is the 6-bin HOG descriptor of the superpixel.
In our experiments, the standard deviations σc, σt, σs,

σd and σh, and the weights w1 and w2 were obtained using
a validation set.

3.2.2 Handling Rare Classes

As mentioned in Section 3.1, while we aim at selecting a
balanced set of training superpixels, having exactly an equal
number for each class is not always possible, due to the in-
sufficient number of superpixels in some rare classes. As a
matter of fact, this problem occurs frequently in large-scale
datasets, and would have a negative impact on the filtering
procedure. Indeed, in Eq. 4, the contribution of a superpixel
belonging to a rare class and highly similar to the query
superpixel could easily be dominated by the combined con-
tributions of superpixels from a common class, even if they
are not too similar to the query.

To address this problem, we propose to modify the defi-
nition of q′

j in Eq. 3 as

q′
j(l) =

{
λ(l) y′j = l

0 otherwise ,
(8)

where λ(l) = Nmax/N(l), with Nmax the maximum num-
ber of samples picked from any class, and N(l) the number
of samples picked from class l. The term λ approaches 1
for the frequent categories, whereas it increases the contri-
bution of the superpixels belonging to rare classes in the
filtering process. Note that, in the perfectly balanced case,
all classes have again the same influence.



Algorithm 1: Sample & Filter Strategy for Nonparametric Label Transfer
Data: Query image + entire set of training images

Rank the training images based on their similarity to the query image (Section 3.1.1)
Randomly sample training superpixels according to their dissimilarity values (dj) (Section 3.1)
for i = 1 to Nq do

qi =
∑Nt

j=1 k(xi,x
′
j)q

′
j ; // Filtering the training superpixels

end
ui = −log(q̃i) ; // Compute a unary term based on the normalized filtered labels
Compute the pixelwise location prior (Section 3.3)
Perform inference in a dense pixel-wise CRF (Section 3.3)
return Dense pixelwise labeling of the query image

3.3. MRF

The semantic information transferred to the query su-
perpixels by our approach is of course prone to error. As
is commonly done in nonparamatric scene parsing meth-
ods [28, 26, 20, 21, 5, 29, 11], we therefore make use of an
MRF to further smooth these initial predictions. More pre-
cisely, our predictions act as unary terms in an MRF defined
over the pixels of the query image, which thus prevents us
from having to train a classifier.

Specifically, let q̃i be the normalized version of the qi

obtained from Eq. 4. We then define the unary potential of
each superpixel i as the negative logarithm of q̃i, and as-
sign this unary potential to all the pixels within superpixel
i. We further combine this unary with a location prior com-
puted as a class histogram built for each pixel from the 15
top images in our ranking. We then make use of the fully-
connected CRF model of Krähenbühl & Koltun [13], which
relies on an efficient mean-field-based inference strategy to
produce a pixelwise labeling of the query image.

The main steps of our nonparametric scene parsing ap-
proach are summarized in Algorithm 1.

4. Experiments
We evaluated our method on two large-scale datasets,

SIFTFlow [17] and LM-SUN [28]. Below, we compare our
results with those of state-of-the-art nonparametric scene
parsing algorithms. In all our experiments, we obtained
the superpixels using the same unsupervised segmentation
method (graph-based segmentation [7]) as Superparsing.

4.1. SIFTFlow

SIFTFlow [17] consists of 2,688 images taken from out-
door scenes and annotated with 33 different class labels.
The standard partition of this dataset includes 2,488 train-
ing images and 200 test images. As noted in [28], this is a
difficult dataset due to the large number of rare classes. For
this dataset, we sampled a maximum of 2500 superpixels
of each class. Note, however, that because of rarity, some
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Figure 3: Label distribution of the superpixels drawn
from the training pool in SIFTFlow. The number of sam-
ples was capped at 2500. Note, however, that some rare
classes only have much fewer available samples, leading to
a very imbalanced class distribution.

classes had much fewer samples. Fig. 3 illustrates the class
label distribution of the drawn samples.

In Table 1, we compare our results with those of state-
of-the-art nonparametric scene parsing methods in terms
of per-pixel and average per-class accuracy. Our approach
performs on par with the baselines in per-pixel accuracy,
but outperforms most of them in per-class accuracy. This,
we believe is due to the more balanced samples that we
obtain. To verify this, we replaced our sampling strategy
with a fixed retrieval set consisting of all the superpixels of
the top 200 images in our ranking.1 Running our filtering-
based label transfer procedure on these superpixels resulted
in 73.6% per-pixel accuracy and 22.2% per-class accuracy.
As expected, while the effect on per-pixel accuracy is rela-
tively small, the per-class accuracy decreases dramatically.
This clearly evidences the importance of getting as balanced
as possible a set of labeled superpixels. Fig. 4 provides a
qualitative comparison of our results with those of Super-
parsing.

Note that, In Table 1, the highest per-class accuracy is
achieved by [29]. This method, however, relies on an ex-
pensive procedure, thus requiring several minutes to pro-
cess an image. By contrast, thanks to our efficient filtering
approach, our algorithm only requires roughly 4 seconds,
which outperforms all the baselines.

1We used 200 because it corresponds to the number of images retrieved
by the baselines.



Figure 4: Qualitative comparison of our results with those of Superparsing [28] on SIFTFlow. 1st row: Query image;
2nd row: Superparsing; 3rd row: Our approach; 4th row: Ground-truth.

Table 1: Comparison of our approach (Sample & Filter)
with the state-of-the-art nonparametric methods on SIFT-
Flow. We report the per-pixel and average per-class accura-
cies, as well as the average time to process one image. For
the baselines, a > indicates that the reported runtimes do
not include the entire processing time.

per-pixel per-class runtime

Sample & Filter 74.5 35.5 2.0s
Sample & Filter (with MRF) 76.6 35.0 4.2s

Superparsing (with MRF) [28] 76.2 29.1 >5.9s
Eigen et al. (with MRF) [5] 77.1 32.5 >16.6s
Myeong et al. (with MRF) [20] 77.1 32.3 >23s
SIFTFlow [18] 76.7 - >25mins
WAKNN (with MRF) [26] 79.2 33.8 >70s
CollageParsing (with MRF) [29] 77.1 41.1 2mins

Note that our runtimes were obtained on a standard desk-
top with an Intel 3.07GHz six-core processor and 12 GB
RAM. Our algorithm was implemented mostly in Matlab,
with the exception of the filtering step, which was built upon
the C++ code of [13]. This leaves room for speed improve-
ment. While we do not know the exact setup of the base-

Table 2: Comparison of our approach (Sample &
Filter) with Superparsing using an ideal image rank-
ing on SIFTFlow.

per-pixel per-class

Sample & Filter (with MRF) 83.1 44.3

Superparsing (with MRF) [28] 80.2 33.6

lines, we believe that, since we used an ordinary platform,
the runtime comparison remains fair.

To further evaluate the potential of our approach, and
following the analysis performed in [28], we performed
an additional experiment based on an ideal image ranking
strategy. To this end, and following [28], the retrieval was
achieved using histograms of ground-truth class labels, both
for the training and test images. The idea here is to try and
evaluate the best possible performance of our approach. The
results of this experiment are reported in Table 2, where we
compare our approach with the results of [28] obtained in
the same ideal setting. These results indicate that, given
a better image similarity measure, our method has the po-
tential to achieve higher accuracy than Superparsing, espe-
cially in terms of per-class accuracy.



Max	  No.	  SP per-‐pixel	  acc. per-‐class	  acc.
500 70.7 31.5

1000 73.2 33.4
1500 74.9 33.7
2000 76 33.9
2500 76.6 35
3000 76.6 34.7
3500 76 34.5
4000 75.6 34.2
4500 75.1 34
5000 75 33.6

Max	  No.	  SP IOU	  acc.
500 20.8

1000 21.7
1500 23
2000 23.6
2500 24.4
3000 24.1
3500 23.3
4000 22.8
4500 22.5
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Figure 5: Influence of Ns. We report the per-class, per-pixel and
IoU accuracies as a function of the maximum number of superpix-
els sampled from each class. Note that our approach yields good
results for a large range of values.

To study the influence of the number of superpixels sam-
pled from each class on our results, we ran our approach
with Ns ranging from 500 to 5000. In Fig. 5a, we report
the per-pixel and per-class accuracies as a function of Ns,
which shows that our approach yields good results in the
range 2000-3500. In Fig. 5b, we report the Intersection over
Union (IoU) of our results w.r.t. ground-truth as a function
ofNs. As a comparison, the IoU of Superparsing [28], com-
puted from their results available online, is 21.1. This shows
that our approach (IoU = 24.4 at Ns = 2500) also outper-
forms this baseline according to this error metric. Note that
the results of the other baselines are not publicly available.

Our approach handles the class imbalance problem by
varying the impact of different classes in the filtering pro-
cess according to their frequency in the training samples.
Treating all classes equally (replacing Eq. 8 with Eq. 3)
in our method yields per-pixel and per-class accuracies of
(77.2%, 24.4%). This shows that our strategy significantly
improves the per-class accuracy at only a negligible cost in
terms of per-pixel accuracy.

We further performed an ablation study to study the in-
fluence of different parameters in our model. For instance,
replacing our filtering process with a KNN classifier gave
accuracies of (75.1%, 23.5%), which evidences the bene-
fits of our filtering-based approach. Furthermore, removing
ti, si, or di from the kernels led to accuracies of (76.2%,
28.9%), (75%, 33%) and (64.4%, 36.7%), respectively,
which indicates that all these features are beneficial.

Fig. 6 shows a failure case of our method. This figure
depicts a query image followed by the top six images in
the similarity ranking, the result of our algorithm and the
ground-truth. In this case, the image ranking strategy re-
trieved a semantically irrelevant group of images. As sug-
gested by Table 2, improving the image similarity metric
would address this problem.

Our method scales linearly with the number of labeled
images due to the initial KNN retrieval step. Note that this
could be sped up by using an approximate NN scheme. The
remaining steps scale linearly with the number of sampled
superpixels, as discussed in Section 3.2.

Table 3: Comparison of our approach (Sample & Filter)
with Superparsing on LM-SUN.

per-pixel per-class
runtime
(excluding
retrieval)

Sample & Filter 54.6 6.7 3.7s
Sample & Filter (with MRF) 55.1 6.6 6.0s

Superparsing [28] 50.6 7.1 18.3s
Superparsing (with MRF) [28] 54.4 6.8 18.3s

Table 4: Comparison of our approach (Sample & Filter)
with Superparsing using an ideal image ranking on LM-
SUN.

per-pixel per-class

Sample & Filter (with MRF) 69.3 15

Superparsing [28] (with MRF) 66 13.2

4.2. LM-SUN

The LM-Sun dataset [28] is one the most challenging
benchmarks available for scene parsing. It includes 45,676
images, among which, following the standard partition, 500
images are taken as test data. The ground-truth annotations
of this dataset are comprised of 232 different categories. In
this case, we sampled a maximum of 25,000 superpixels
per class.

In Table 3, we compare our results with those of [28],
which constitutes the state-of-the-art on this dataset. To the
best of our knowledge, Superparsing [28] is the only non-
parametric approach that has been evaluated on this large-
scale dataset. As a matter of fact, the scale of this dataset
causes most nonparametric method to be intractable. By
contrast, our efficient algorithm can still yield state-of-the-
art accuracies in a reasonable time. In particular, our Sam-
ple & Filter procedure takes 3.7 seconds per image on aver-
age, versus 13.1 seconds for Superparsing to transfer the la-
bels. Furthermore, for each query image, our algorithm per-
forms filtering on 367,080 superpixels on average, which is
about 10 times larger than the 35,600 superpixels (200 re-
trieved images, each containing approximately 178 super-
pixels) analyzed by Superparsing. In other words, not only
is our approach faster than Superparsing, but it can also ex-
ploit more labeled data. Fig. 7 provides a qualitative com-
parison of our results with those of Superparsing.

As in the previous section, we conducted an additional
experiment using an ideal image ranking by making use of
histograms of ground-truth annotations. Table 4 provides
the results of this experiment. Note that, again, our ap-
proach has higher potential for improvement given a better
image similarity measure.

5. Conclusion
In this paper, we have introduced a nonparametric ap-

proach to scene parsing based on the concept of sampling



Figure 6: Failure case. The first image is the query and the next six images are the top ranked training images. The last
two images denote our results and the ground-truth, respectively. Note that the top images in the ranking are semantically
irrelevant, which leads to inaccurate labeling. As suggested by Table 2, however, a better image ranking would yield a
significant improvement of our results.

Figure 7: Qualitative comparison of our results with those of Superparsing [28] on LM-SUN. 1st row: Query image;
2nd row: Superparsing; 3rd row: Our approach; 4th row: Ground-truth.

and filtering. Instead of using a fixed retrieval set of images,
our approach samples labeled superpixels, thus allowing us
to obtain a more balanced set of data. This, in conjunc-
tion with our efficient filtering-based label transfer proce-
dure, has proven effective at handling large-scale datasets.

In particular, our approach has achieved accuracies that are
competitive with the state-of-the-art nonparametric meth-
ods, while being faster than them. In the future, we intend to
study better image similarity metrics, which, as evidenced
by our analysis, has potential to further boost our accuracy.
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