1,033 research outputs found

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)

    Dagstuhl News January - December 2007

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Digital video moving object segmentation using tensor voting: A non-causal, accurate approach

    Get PDF
    Motion based video segmentation is important in many video processing applications such as MPEG4. This thesis presents an exhaustive, non-causal method to estimate boundaries between moving objects in a video clip. It make use of tensor voting principles. The tensor voting is adapted to allow image structure to manifest in the tangential plane of the saliency map. The technique allows direct estimation of motion vectors from second-order tensor analysis. The tensors make maximal and direct use of the available information by encoding it into the dimensionality of the tensor. The tensor voting methodology introduces a non-symmetrical voting kernel to allow a measure of voting skewness to be inferred. Skewness is found in the third-order tensor in the direction of the tangential first eigenvector. This new concept is introduced as the Tensor Skewness Map or TS map. The TS map gives further information about whether an object is occluding or disoccluding another object. The information can be used to infer the layering order of the moving objects in the video clip. Matched filtering and detection are applied to reduce the TS map into occluding and disoccluding detections. The technique is computationally exhaustive, but may find use in off-line video object segmentation processes. The use of commercial-off-the-shelf Graphic Processor Units is demonstrated to scale well to the tensor voting framework, providing the computational speed improvement required to make the framework realisable on a larger scale and to handle tensor dimensionalities higher than before

    Active Perception by Interaction with Other Agents in a Predictive Coding Framework: Application to Internet of Things Environment

    Get PDF
    Predicting the state of an agent\u27s partially-observable environment is a problem of interest in many domains. Typically in the real world, the environment consists of multiple agents, not necessarily working towards a common goal. Though the goal and sensory observation for each agent is unique, one agent might have acquired some knowledge that may benefit the other. In essence, the knowledge base regarding the environment is distributed among the agents. An agent can sample this distributed knowledge base by communicating with other agents. Since an agent is not storing the entire knowledge base, its model can be small and its inference can be efficient and fault-tolerant. However, the agent needs to learn -- when, with whom and what -- to communicate (in general interact) under different situations.This dissertation presents an agent model that actively and selectively communicates with other agents to predict the state of its environment efficiently. Communication is a challenge when the internal models of other agents is unknown and unobservable. The proposed agent learns communication policies as mappings from its belief state to when, with whom and what to communicate. The policies are learned using predictive coding in an online manner, without any reinforcement. The proposed agent model is evaluated on widely-studied applications, such as human activity recognition from multimodal, multisource and heterogeneous sensor data, and transferring knowledge across sensor networks. In the applications, either each sensor or each sensor network is assumed to be monitored by an agent. The recognition accuracy on benchmark datasets is comparable to the state-of-the-art, even though our model has significantly fewer parameters and infers the state in a localized manner. The learned policy reduces number of communications. The agent is tolerant to communication failures and can recognize the reliability of each agent from its communication messages. To the best of our knowledge, this is the first work on learning communication policies by an agent for predicting the state of its environment
    • …
    corecore