20 research outputs found

    Bounds on the Coefficients of Tension and Flow Polynomials

    Full text link
    The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we make use of the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a convex ear decomposition. This leads to the desired bounds on the coefficients of these polynomials.Comment: 16 page

    Enumerating Colorings, Tensions and Flows in Cell Complexes

    Get PDF
    We study quasipolynomials enumerating proper colorings, nowhere-zero tensions, and nowhere-zero flows in an arbitrary CW-complex XX, generalizing the chromatic, tension and flow polynomials of a graph. Our colorings, tensions and flows may be either modular (with values in Z/kZ\mathbb{Z}/k\mathbb{Z} for some kk) or integral (with values in {−k+1,…,k−1}\{-k+1,\dots,k-1\}). We obtain deletion-contraction recurrences and closed formulas for the chromatic, tension and flow quasipolynomials, assuming certain unimodularity conditions. We use geometric methods, specifically Ehrhart theory and inside-out polytopes, to obtain reciprocity theorems for all of the aforementioned quasipolynomials, giving combinatorial interpretations of their values at negative integers as well as formulas for the numbers of acyclic and totally cyclic orientations of XX.Comment: 28 pages, 3 figures. Final version, to appear in J. Combin. Theory Series

    On Enumeration of Conjugacy Classes of Coxeter Elements

    Get PDF
    In this paper we study the equivalence relation on the set of acyclic orientations of a graph Y that arises through source-to-sink conversions. This source-to-sink conversion encodes, e.g. conjugation of Coxeter elements of a Coxeter group. We give a direct proof of a recursion for the number of equivalence classes of this relation for an arbitrary graph Y using edge deletion and edge contraction of non-bridge edges. We conclude by showing how this result may also be obtained through an evaluation of the Tutte polynomial as T(Y,1,0), and we provide bijections to two other classes of acyclic orientations that are known to be counted in the same way. A transversal of the set of equivalence classes is given.Comment: Added a few results about connections to the Tutte polynomia
    corecore