14 research outputs found

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Type synthesis and static balancing of a class of deployable mechanisms

    Get PDF
    This thesis addresses the type synthesis and static balancing of a class of deployable mechanisms, which can be applied in applications in many areas including aerospace and daily life. Novel construction methods are proposed to obtain the deployable mechanisms. First, the type synthesis of the foldable 8-revolute joint (R) linkages with multiple modes is presented. Two types of linkages are constructed by connecting planar 4R linkages and spherical 4R linkages. The obtained linkages can be folded into two layers or four layers, and have multiple motion modes. A spatial triad is also adopted to build single-loop linkages, then the single-loop linkages are connected using spherical (S) joints or RRR chains to obtain deployable polyhedral mechanisms (DPMs). The DPMs have only 1- degree-of-freedom (DOF) when deployed, and several mechanisms with 8R linkages and 10R linkages have multiple motion modes and can switch modes through transition positions. In addition, when connecting single-loop linkages using half the number of the RRR chains, the prism mechanisms obtain an additional 1-DOF rotation mode. Furthermore, the DPMs are developed into statically balanced mechanisms. The geometric static balancing approaches for the planar 4R parallelogram linkages, planar manipulators, spherical manipulators and spatial manipulators are developed so that the mechanisms can counter gravity while maintaining the positions of the mechanisms. Only springs are used to design the statically balanced system readily, with almost no calculation. A novel numerical optimization approach is also introduced which adopts the sum of squared differences of the potential energies as the objective function. Using the proposed static balancing approaches, the 8R linkages and the DPMs presented in this thesis can be statically balanced

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Design Space for Space Design: Humanly {S:pace} Constructs Across Perceptual Boundaries

    Get PDF
    In this PhD research by thesis, the author documents his journey that explores modes of operations beyond those predominantly applied at NASA. Specifically, he is looking at designerly and artistic modes of operation, with a research goal to show demonstrable value to enhance NASA’s capability to innovate. This exploration is built on cybernetic perspectives and goal-seeking focused on human centered design within NASA’s space exploration paradigm. The author uses a performative approach through real world examples to highlight and substantiate the benefits of novel perspectives, conversations, and boundary objects, which shows their demonstrable value to NASA. The significance of the research findings is discussed in relations to the state of practice, which is derived from interviews with practitioners across NASA’s organizational hierarchy, combined with personal experiences, and independent research on the topics. The two primary application examples examine strategic level organizational conversations in support of strategic decision-making, and a human centered approach to space habitats that utilizes conversations and boundary objects aimed towards higher-level needs of the astronauts. Secondary examples, as added material, explore designing the design environments through human centered conversations with stakeholders, storytelling, multi-nodal and multimodal conversations, designerly modes of operation in engineering-focused environments, and explore the potential benefits of a design education program to change the organizational culture on the long term. These examples are grounded and substantiated using specifically created boundary objects, which are used as communication tools across multiple disciplines. This research is timely, because expanding humanity into space is an ongoing and inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us, the human explorers, with extreme cold, heat, vacuum and radiation—among other conditions—unlike anything encountered on Earth. As a consequence, today’s space exploration, both robotic- and human-exploration driven, is dominated by objects and artifacts which are mostly conceived, designed and built through technological and engineering approaches, to support basic physiological, psychological, and safety needs. NASA’s activities, products, and processes are controlled by rigid procedural requirements, and are highly dependent on government funding. Since the Apollo era, the annual budget decreased by nine fold and remained virtually flat. Resource constraints, funding uncertainty, and changes in the organizational culture gradually led to innovation barriers, and formed a temporally and spatially coupled cyclical wicked problem for NASA. Yet, the aging workforce, still remembering the golden age of space exploration, is hoping and planning for large “fire and smoke” type missions, which puts NASA on an unsustainable path, while perpetuated by technology and management focus to overcome obstacles. Finding new directions may require a second-order cybernetic transformational change, starting with a changed paradigm, which in turn will impact the Agency’s mission and culture, and influence the core processes. In this research the author makes a case to broaden NASA’s worldview today, which is dominated by science, engineering, technology, project and resource management considerations. This can be achieved through novel perspectives gained from cybernetics, and other modes of operation through human centered design and art. While the proposed performative approach is applied to NASA, it is not bounded by it. These perspectives and modes of operation can be applied to any other field, discipline or hierarchical structure within scientific, technological, and social developments. Cybernetic mapping of any environment can provide insights to the connections and the potential for interactions between the various actors within. Understanding the complexities, non-linearity, and competing and often misaligned influences is important to set goals for the system and navigate towards preferable outcomes. Controlling and regulating the variety of these dynamic and responsive systems, in line with the set out goals and objectives, also require considerations and guidance, where cybernetic mapping, conversations and novel shared languages between the actors (in the form of commonly agreed understanding of the meaning), and human center design may play a role. When people are involved in these circular interactions and conversations, human centeredness can lead to transformative psychological impact on a personal level, and strategic advantages at an organizational level

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Tangible language for hands-on play and learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 187-192).For over a century, educators and constructivist theorists have argued that children learn by actively forming and testing -- constructing -- theories about how the world works. Recent efforts in the design of "tangible user interfaces" (TUIs) for learning have sought to bring together interaction models like direct manipulation and pedagogical frameworks like constructivism to make new, often complex, ideas salient for young children. Tangible interfaces attempt to eliminate the distance between the computational and physical world by making behavior directly manipulable with one's hands. In the past, systems for children to model behavior have been either intuitive-but-simple (e.g. curlybot) or complex-but-abstract, (e.g. LEGO Mindstorms). In order to develop a system that supports a user's transition from intuitive-but-simple constructions to constructions that are complex-but-abstract, I draw upon constructivist educational theories, particularly Bruner's theories of how learning progresses through enactive then iconic and then symbolic representations. This thesis present an example system and set of design guidelines to create a class of tools that helps people transition from simple-but-intuitive exploration to abstract-and-flexible exploration. The Topobo system is designed to facilitate mental transitions between different representations of ideas, and between different tools. A modular approach, with an inherent grammar, helps people make such transitions. With Topobo, children use enactive knowledge, e.g. knowing how to walk, as the intellectual basis to understand a scientific domain, e.g. engineering and robot locomotion. Queens, backpacks, Remix and Robo add various abstractions to the system, and extend the tangible interface. Children use Topobo to transition from hands-on knowledge to theories that can be tested and reformulated, employing a combination of enactive, iconic and symbolic representations of ideas.by Hayes Solos Raffle.Ph.D

    Fabricate 2011

    Get PDF
    FABRICATE is an international peer reviewed conference that takes place every three years with a supporting publication on the theme of Digital Fabrication. Discussing the progressive integration of digital design with manufacturing processes, and its impact on design and making in the 21st century, FABRICATE brings together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation. Discussion on key themes includes: how digital fabrication technologies are enabling new creative and construction opportunities from component to building scales, the difficult gap that exists between digital modelling and its realisation, material performance and manipulation, off-site and on-site construction, interdisciplinary education, economic and sustainable contexts. FABRICATE features cutting-edge built work from both academia and practice, making it a unique event that attracts delegates from all over the world
    corecore