1,667 research outputs found

    Multi-stream CNN based Video Semantic Segmentation for Automated Driving

    Full text link
    Majority of semantic segmentation algorithms operate on a single frame even in the case of videos. In this work, the goal is to exploit temporal information within the algorithm model for leveraging motion cues and temporal consistency. We propose two simple high-level architectures based on Recurrent FCN (RFCN) and Multi-Stream FCN (MSFCN) networks. In case of RFCN, a recurrent network namely LSTM is inserted between the encoder and decoder. MSFCN combines the encoders of different frames into a fused encoder via 1x1 channel-wise convolution. We use a ResNet50 network as the baseline encoder and construct three networks namely MSFCN of order 2 & 3 and RFCN of order 2. MSFCN-3 produces the best results with an accuracy improvement of 9% and 15% for Highway and New York-like city scenarios in the SYNTHIA-CVPR'16 dataset using mean IoU metric. MSFCN-3 also produced 11% and 6% for SegTrack V2 and DAVIS datasets over the baseline FCN network. We also designed an efficient version of MSFCN-2 and RFCN-2 using weight sharing among the two encoders. The efficient MSFCN-2 provided an improvement of 11% and 5% for KITTI and SYNTHIA with negligible increase in computational complexity compared to the baseline version.Comment: Accepted for Oral Presentation at VISAPP 201

    Online Video Deblurring via Dynamic Temporal Blending Network

    Full text link
    State-of-the-art video deblurring methods are capable of removing non-uniform blur caused by unwanted camera shake and/or object motion in dynamic scenes. However, most existing methods are based on batch processing and thus need access to all recorded frames, rendering them computationally demanding and time consuming and thus limiting their practical use. In contrast, we propose an online (sequential) video deblurring method based on a spatio-temporal recurrent network that allows for real-time performance. In particular, we introduce a novel architecture which extends the receptive field while keeping the overall size of the network small to enable fast execution. In doing so, our network is able to remove even large blur caused by strong camera shake and/or fast moving objects. Furthermore, we propose a novel network layer that enforces temporal consistency between consecutive frames by dynamic temporal blending which compares and adaptively (at test time) shares features obtained at different time steps. We show the superiority of the proposed method in an extensive experimental evaluation.Comment: 10 page

    Learning 3D Human Pose from Structure and Motion

    Full text link
    3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with a weakly-supervised learning framework to jointly learn from large-scale in-the-wild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.Comment: ECCV 2018. Project page: https://www.cse.iitb.ac.in/~rdabral/3DPose
    corecore