811 research outputs found

    A brief survey of visual saliency detection

    Get PDF

    Deep Learning for Video Object Segmentation:A Review

    Get PDF
    As one of the fundamental problems in the field of video understanding, video object segmentation aims at segmenting objects of interest throughout the given video sequence. Recently, with the advancements of deep learning techniques, deep neural networks have shown outstanding performance improvements in many computer vision applications, with video object segmentation being one of the most advocated and intensively investigated. In this paper, we present a systematic review of the deep learning-based video segmentation literature, highlighting the pros and cons of each category of approaches. Concretely, we start by introducing the definition, background concepts and basic ideas of algorithms in this field. Subsequently, we summarise the datasets for training and testing a video object segmentation algorithm, as well as common challenges and evaluation metrics. Next, previous works are grouped and reviewed based on how they extract and use spatial and temporal features, where their architectures, contributions and the differences among each other are elaborated. At last, the quantitative and qualitative results of several representative methods on a dataset with many remaining challenges are provided and analysed, followed by further discussions on future research directions. This article is expected to serve as a tutorial and source of reference for learners intended to quickly grasp the current progress in this research area and practitioners interested in applying the video object segmentation methods to their problems. A public website is built to collect and track the related works in this field: https://github.com/gaomingqi/VOS-Review

    Understanding Video Transformers for Segmentation: A Survey of Application and Interpretability

    Full text link
    Video segmentation encompasses a wide range of categories of problem formulation, e.g., object, scene, actor-action and multimodal video segmentation, for delineating task-specific scene components with pixel-level masks. Recently, approaches in this research area shifted from concentrating on ConvNet-based to transformer-based models. In addition, various interpretability approaches have appeared for transformer models and video temporal dynamics, motivated by the growing interest in basic scientific understanding, model diagnostics and societal implications of real-world deployment. Previous surveys mainly focused on ConvNet models on a subset of video segmentation tasks or transformers for classification tasks. Moreover, component-wise discussion of transformer-based video segmentation models has not yet received due focus. In addition, previous reviews of interpretability methods focused on transformers for classification, while analysis of video temporal dynamics modelling capabilities of video models received less attention. In this survey, we address the above with a thorough discussion of various categories of video segmentation, a component-wise discussion of the state-of-the-art transformer-based models, and a review of related interpretability methods. We first present an introduction to the different video segmentation task categories, their objectives, specific challenges and benchmark datasets. Next, we provide a component-wise review of recent transformer-based models and document the state of the art on different video segmentation tasks. Subsequently, we discuss post-hoc and ante-hoc interpretability methods for transformer models and interpretability methods for understanding the role of the temporal dimension in video models. Finally, we conclude our discussion with future research directions

    Unsupervised maritime target detection

    Get PDF
    The unsupervised detection of maritime targets in grey scale video is a difficult problem in maritime video surveillance. Most approaches assume that the camera is static and employ pixel-wise background modelling techniques for foreground detection; other methods rely on colour or thermal information to detect targets. These methods fail in real-world situations when the static camera assumption is violated, and colour or thermal data is unavailable. In defence and security applications, prior information and training samples of targets may be unavailable for training a classifier; the learning of a one class classifier for the background may be impossible as well. Thus, an unsupervised online approach that attempts to learn from the scene data is highly desirable. In this thesis, the characteristics of the maritime scene and the ocean texture are exploited for foreground detection. Two fast and effective methods are investigated for target detection. Firstly, online regionbased background texture models are explored for describing the appearance of the ocean. This approach avoids the need for frame registration because the model is built spatially rather than temporally. The texture appearance of the ocean is described using Local Binary Pattern (LBP) descriptors. Two models are proposed: one model is a Gaussian Mixture (GMM) and the other, referred to as a Sparse Texture Model (STM), is a set of histogram texture distributions. The foreground detections are optimized using a Graph Cut (GC) that enforces spatial coherence. Secondly, feature tracking is investigated as a means of detecting stable features in an image frame that typically correspond to maritime targets; unstable features are background regions. This approach is a Track-Before-Detect (TBD) concept and it is implemented using a hierarchical scheme for motion estimation, and matching of Scale- Invariant Feature Transform (SIFT) appearance features. The experimental results show that these approaches are feasible for foreground detection in maritime video when the camera is either static or moving. Receiver Operating Characteristic (ROC) curves were generated for five test sequences and the Area Under the ROC Curve (AUC) was analyzed for the performance of the proposed methods. The texture models, without GC optimization, achieved an AUC of 0.85 or greater on four out of the five test videos. At 50% True Positive Rate (TPR), these four test scenarios had a False Positive Rate (FPR) of less than 2%. With the GC optimization, an AUC of greater than 0.8 was achieved for all the test cases and the FPR was reduced in all cases when compared to the results without the GC. In comparison to the state of the art in background modelling for maritime scenes, our texture model methods achieved the best performance or comparable performance. The two texture models executed at a reasonable processing frame rate. The experimental results for TBD show that one may detect target features using a simple track score based on the track length. At 50% TPR a FPR of less than 4% is achieved for four out of the five test scenarios. These results are very promising for maritime target detection
    • …
    corecore