3 research outputs found

    Noise-Assisted Instantaneous Coherence Analysis of Brain Connectivity

    Get PDF
    Characterizing brain connectivity between neural signals is key to understanding brain function. Current measures such as coherence heavily rely on Fourier or wavelet transform, which inevitably assume the signal stationarity and place severe limits on its time-frequency resolution. Here we addressed these issues by introducing a noise-assisted instantaneous coherence (NAIC) measure based on multivariate mode empirical decomposition (MEMD) coupled with Hilbert transform to achieve high-resolution time frequency representation of neural coherence. In our method, fully data-driven MEMD, together with Hilbert transform, is first employed to provide time-frequency power spectra for neural data. Such power spectra are typically sparse and of high resolution, that is, there usually exist many zero values, which result in numerical problems for directly computing coherence. Hence, we propose to add random noise onto the spectra, making coherence calculation feasible. Furthermore, a statistical randomization procedure is designed to cancel out the effect of the added noise. Computer simulations are first performed to verify the effectiveness of NAIC. Local field potentials collected from visual cortex of macaque monkey while performing a generalized flash suppression task are then used to demonstrate the usefulness of our NAIC method to provide highresolution time-frequency coherence measure for connectivity analysis of neural data

    Auditory Streaming: Behavior, Physiology, and Modeling

    Get PDF
    Auditory streaming is a fundamental aspect of auditory perception. It refers to the ability to parse mixed acoustic events into meaningful streams where each stream is assumed to originate from a separate source. Despite wide interest and increasing scientific investigations over the last decade, the neural mechanisms underlying streaming still remain largely unknown. A simple example of this mystery concerns the streaming of simple tone sequences, and the general assumption that separation along the tonotopic axis is sufficient for stream segregation. However, this dissertation research casts doubt on the validity of this assumption. First, behavioral measures of auditory streaming in ferrets prove that they can be used as an animal model to study auditory streaming. Second, responses from neurons in the primary auditory cortex (A1) of ferrets show that spectral components that are well-separated in frequency produce comparably segregated responses along the tonotopic axis, no matter whether presented synchronously or consecutively, despite the substantial differences in their streaming percepts when measured psychoacoustically in humans. These results argue against the notion that tonotopic separation per se is a sufficient neural correlate of stream segregation. Thirdly, comparing responses during behavior to those during the passive condition, the temporal correlations of spiking activity between neurons belonging to the same stream display an increased correlation, while responses among neurons belonging to different streams become less correlated. Rapid task-related plasticity of neural receptive fields shows a pattern that is consistent with the changes in correlation. Taken together these results indicate that temporal coherence is a plausible neural correlate of auditory streaming. Finally, inspired by the above biological findings, we propose a computational model of auditory scene analysis, which uses temporal coherence as the primary criterion for predicting stream formation. The promising results of this dissertation research significantly advance our understanding of auditory streaming and perception
    corecore