2,296,524 research outputs found
M-quantile regression analysis of temporal gene expression data
In this paper, we explore the use of M-regression and M-quantile coefficients to detect statistical differences between temporal curves that belong to different experimental conditions. In particular, we consider the application of temporal gene expression data. Here, the aim is to detect genes whose temporal expression is significantly different across a number of biological conditions. We present a new method to approach this problem. Firstly, the temporal profiles of the genes are modelled by a parametric M-quantile regression model. This model is particularly appealing to small-sample gene
expression data, as it is very robust against outliers and it does not make any assumption on the error distribution. Secondly, we further increase the robustness of the method by summarising the M-quantile regression models for a large range of quantile values into an M-quantile coefficient. Finally, we employ a Hotelling T2-test to detect significant differences of the temporal M-quantile profiles across conditions. Simulated data shows the increased robustness of M-quantile regression methods over standard regression methods. We conclude by using the method to detect differentially expressed genes from time-course microarray data on muscular dystrophy
Spatio-temporal analysis of flows in CDC 2013 data
We describe analysis of flows in the CDC2013 bicycles data set
A Framework for Spatio-Temporal Data Analysis and Hypothesis Exploration
We present a general framework for pattern discovery and hypothesis exploration in spatio-temporal data sets that is based on delay-embedding. This is a remarkable method of nonlinear time-series analysis that allows the full phase-space behaviour of a system to be reconstructed from only a single observable (accessible variable). Recent extensions to the theory that focus on a probabilistic interpretation extend its scope and allow practical application to noisy, uncertain and high-dimensional systems. The framework uses these extensions to aid alignment of spatio-temporal sub-models (hypotheses) to empirical data - for example satellite images plus remote-sensing - and to explore modifications consistent with this alignment. The novel aspect of the work is a mechanism for linking global and local dynamics using a holistic spatio-temporal feedback loop. An example framework is devised for an urban based application, transit centric developments, and its utility is demonstrated with real data
Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data
Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE) analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v) is provided. The results show that the temporal scales of the current climate (1960–2014) are different from the long-term average (1850–1960). For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the statistical properties of climate time-series data that can go undetected using traditional method
- …
