28,905 research outputs found

    From Uncertainty Data to Robust Policies for Temporal Logic Planning

    Full text link
    We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving

    Unification Strategies in Cognitive Science

    Get PDF
    Cognitive science is an interdisciplinary conglomerate of various research fields and disciplines, which increases the risk of fragmentation of cognitive theories. However, while most previous work has focused on theoretical integration, some kinds of integration may turn out to be monstrous, or result in superficially lumped and unrelated bodies of knowledge. In this paper, I distinguish theoretical integration from theoretical unification, and propose some analyses of theoretical unification dimensions. Moreover, two research strategies that are supposed to lead to unification are analyzed in terms of the mechanistic account of explanation. Finally, I argue that theoretical unification is not an absolute requirement from the mechanistic perspective, and that strategies aiming at unification may be premature in fields where there are multiple conflicting explanatory models

    A Deflationary Account of Mental Representation

    Get PDF
    Among the cognitive capacities of evolved creatures is the capacity to represent. Theories in cognitive neuroscience typically explain our manifest representational capacities by positing internal representations, but there is little agreement about how these representations function, especially with the relatively recent proliferation of connectionist, dynamical, embodied, and enactive approaches to cognition. In this talk I sketch an account of the nature and function of representation in cognitive neuroscience that couples a realist construal of representational vehicles with a pragmatic account of mental content. I call the resulting package a deflationary account of mental representation and I argue that it avoids the problems that afflict competing accounts
    corecore