13,420 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    CUP: Comprehensive User-Space Protection for C/C++

    Full text link
    Memory corruption vulnerabilities in C/C++ applications enable attackers to execute code, change data, and leak information. Current memory sanitizers do no provide comprehensive coverage of a program's data. In particular, existing tools focus primarily on heap allocations with limited support for stack allocations and globals. Additionally, existing tools focus on the main executable with limited support for system libraries. Further, they suffer from both false positives and false negatives. We present Comprehensive User-Space Protection for C/C++, CUP, an LLVM sanitizer that provides complete spatial and probabilistic temporal memory safety for C/C++ program on 64-bit architectures (with a prototype implementation for x86_64). CUP uses a hybrid metadata scheme that supports all program data including globals, heap, or stack and maintains the ABI. Compared to existing approaches with the NIST Juliet test suite, CUP reduces false negatives by 10x (0.1%) compared to the state of the art LLVM sanitizers, and produces no false positives. CUP instruments all user-space code, including libc and other system libraries, removing them from the trusted code base

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure
    • …
    corecore