3 research outputs found

    Computers (Basel)

    Get PDF
    Suicide is a leading cause of death and a global public health problem, representing more than one in every 100 deaths in 2019. Modeling and Simulation (M&S) is widely used to address public health problems, and numerous simulation models have investigated the complex, dependent, and dynamic risk factors contributing to suicide. However, no review has been dedicated to these models, which prevents modelers from effectively learning from each other and raises the risk of redundant efforts. To guide the development of future models, in this paper we perform the first scoping review of simulation models for suicide prevention. Examining ten articles, we focus on three practical questions. First, which interventions are supported by previous models? We found that four groups of models collectively support 53 interventions. We examined these interventions through the lens of global recommendations for suicide prevention, highlighting future areas for model development. Second, what are the obstacles preventing model application? We noted the absence of cost effectiveness in all models reviewed, meaning that certain simulated interventions may be infeasible. Moreover, we found that most models do not account for different effects of suicide prevention interventions across demographic groups. Third, how much confidence can we place in the models? We evaluated models according to four best practices for simulation, leading to nuanced findings that, despite their current limitations, the current simulation models are powerful tools for understanding the complexity of suicide and evaluating suicide prevention interventions.CC999999/ImCDC/Intramural CDC HHSUnited States

    Temporal aggregation impacts on epidemiological simulations employing microcontact data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microcontact datasets gathered automatically by electronic devices have the potential augment the study of the spread of contagious disease by providing detailed representations of the study population’s contact dynamics. However, the impact of data collection experimental design on the subsequent simulation studies has not been adequately addressed. In particular, the impact of study duration and contact dynamics data aggregation on the ultimate outcome of epidemiological models has not been studied in detail, leaving the potential for erroneous conclusions to be made based on simulation outcomes.</p> <p>Methods</p> <p>We employ a previously published data set covering 36 participants for 92 days and a previously published agent-based H1N1 infection model to analyze the impact of contact dynamics representation on the simulated outcome of H1N1 transmission. We compared simulated attack rates resulting from the empirically recorded contact dynamics (ground truth), aggregated, typical day, and artificially generated synthetic networks.</p> <p>Results</p> <p>No aggregation or sampling policy tested was able to reliably reproduce results from the ground-truth full dynamic network. For the population under study, typical day experimental designs – which extrapolate from data collected over a brief period – exhibited too high a variance to produce consistent results. Aggregated data representations systematically overestimated disease burden, and synthetic networks only reproduced the ground truth case when fitting errors systemically underestimated the total contact, compensating for the systemic overestimation from aggregation.</p> <p>Conclusions</p> <p>The interdepedendencies of contact dynamics and disease transmission require that detailed contact dynamics data be employed to secure high fidelity in simulation outcomes of disease burden in at least some populations. This finding serves as motivation for larger, longer and more socially diverse contact dynamics tracing experiments and as a caution to researchers employing calibrated aggregate synthetic representations of contact dynamics in simulation, as the calibration may underestimate disease parameters to compensate for the overestimation of disease burden imposed by the aggregate contact network representation.</p

    Modeling Human Mobility Entropy as a Function of Spatial and Temporal Quantizations

    Get PDF
    The knowledge of human mobility is an integral component of several different branches of research and planning, including delay tolerant network routing, cellular network planning, disease prevention, and urban planning. The uncertainty associated with a person's movement plays a central role in movement predictability studies. The uncertainty can be quantified in a succinct manner using entropy rate, which is based on the information theoretic entropy. The entropy rate is usually calculated from past mobility traces. While the uncertainty, and therefore, the entropy rate depend on the human behavior, the entropy rate is not invariant to spatial resolution and sampling interval employed to collect mobility traces. The entropy rate of a person is a manifestation of the observable features in the person's mobility traces. Like entropy rate, these features are also dependent on spatio-temporal quantization. Different mobility studies are carried out using different spatio-temporal quantization, which can obscure the behavioral differences of the study populations. But these behavioral differences are important for population-specific planning. The goal of dissertation is to develop a theoretical model that will address this shortcoming of mobility studies by separating parameters pertaining to human behavior from the spatial and temporal parameters
    corecore