13,128 research outputs found

    Unsupervised offline video object segmentation using object enhancement and region merging

    Get PDF
    Content-based representation of video sequences for applications such as MPEG-4 and MPEG-7 coding is an area of growing interest in video processing. One of the key steps to content-based representation is segmenting the video into a meaningful set of objects. Existing methods often accomplish this through the use of color, motion, or edge detection. Other approaches combine several features in an effort to improve on single-feature approaches. Recent work proposes the use of object trajectories to improve the segmentation of objects that have been tracked throughout a video clip. This thesis proposes an unsupervised video object segmentation method that introduces a number of improvements to existing work in the area. The initial segmentation utilizes object color and motion variance to more accurately classify image pixels to their best fit region. Histogram-based merging is then employed to reduce over-segmentation of the first frame. During object tracking, segmentation quality measures based on object color and motion contrast are taken. These measures are then used to enhance video objects through selective pixel re-classification. After object enhancement, cumulative histogram-based merging, occlusion handling, and island detection are used to help group regions into meaningful objects. Objective and subjective tests were performed on a set of standard video test sequences which demonstrate improved accuracy and greater success in identifying the real objects in a video clip compared to two reference methods. Greater success and improved accuracy in identifying video objects is first demonstrated by subjectively examining selected frames from the test sequences. After this, objective results are obtained through the use of a set of measures that aim at evaluating the accuracy of object boundaries and temporal stability through the use of color, motion and histogram

    A proposal for dependent optimization in scalabale region-based coding systems

    Get PDF
    We address in this paper the problem of optimal coding in the framework of region-based video coding systems, with a special stress on content-based functionalities. We present a coding system that can provide scaled layers (using PSNR or temporal content-based scalability) such that each one has an optimal partition with optimal bit allocation among the resulting regions. This coding system is based on a dependent optimization algorithm that can provide joint optimality for a group of layers or a group of frames.Peer ReviewedPostprint (published version

    A segmentation-based coding system allowing manipulation of objects (sesame)

    Get PDF
    We present a coding scheme that achieves, for each image in the sequence, the best segmentation in terms of rate-distortion theory. It is obtained from a set of initial regions and a set of available coding techniques. The segmentation combines spatial and motion criteria. It selects at each area of the image the most adequate criterion for defining a partition in order to obtain the best compromise between cost and quality. In addition, the proposed scheme is very suitable for addressing content-based functionalities.Peer ReviewedPostprint (published version

    A video object generation tool allowing friendly user interaction

    Get PDF
    In this paper we describe an interactive video object segmentation tool developed in the framework of the ACTS-AC098 MOMUSYS project. The Video Object Generator with User Environment (VOGUE) combines three different sets of automatic and semi-automatic-tool (spatial segmentation, object tracking and temporal segmentation) with general purpose tools for user interaction. The result is an integrated environment allowing the user-assisted segmentation of any sort of video sequences in a friendly and efficient manner.Peer ReviewedPostprint (published version

    Segmentation-based video coding:temporals links

    Get PDF
    This paper analyzes the main elements that a segmentation-based video coding approach should be based on so that it can address coding efficiency and content-based functionalities. Such elements can be defined as temporal linking and rate control. The basic features of such elements are discussed and, in both cases, a specific implementation is proposed.Peer ReviewedPostprint (published version

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Morphological operators for very low bit rate video coding

    Get PDF
    This paper deals with the use of some morphological tools for video coding at very low bit rates. Rather than describing a complete coding algorithm, the purpose of this paper is to focus on morphological connected operators and segmentation tools that have proved to be attractive for compression.Peer ReviewedPostprint (published version

    Coding of details in very low bit-rate video systems

    Get PDF
    In this paper, the importance of including small image features at the initial levels of a progressive second generation video coding scheme is presented. It is shown that a number of meaningful small features called details should be coded, even at very low data bit-rates, in order to match their perceptual significance to the human visual system. We propose a method for extracting, perceptually selecting and coding of visual details in a video sequence using morphological techniques. Its application in the framework of a multiresolution segmentation-based coding algorithm yields better results than pure segmentation techniques at higher compression ratios, if the selection step fits some main subjective requirements. Details are extracted and coded separately from the region structure and included in the reconstructed images in a later stage. The bet of considering the local background of a given detail for its perceptual selection breaks the concept ofPeer ReviewedPostprint (published version
    • …
    corecore