3 research outputs found

    FIBS: A Generic Framework for Classifying Interval-based Temporal Sequences

    Full text link
    We study the problem of classifying interval-based temporal sequences (IBTSs). Since common classification algorithms cannot be directly applied to IBTSs, the main challenge is to define a set of features that effectively represents the data such that classifiers can be applied. Most prior work utilizes frequent pattern mining to define a feature set based on discovered patterns. However, frequent pattern mining is computationally expensive and often discovers many irrelevant patterns. To address this shortcoming, we propose the FIBS framework for classifying IBTSs. FIBS extracts features relevant to classification from IBTSs based on relative frequency and temporal relations. To avoid selecting irrelevant features, a filter-based selection strategy is incorporated into FIBS. Our empirical evaluation on eight real-world datasets demonstrates the effectiveness of our methods in practice. The results provide evidence that FIBS effectively represents IBTSs for classification algorithms, which contributes to similar or significantly better accuracy compared to state-of-the-art competitors. It also suggests that the feature selection strategy is beneficial to FIBS's performance.Comment: In: Big Data Analytics and Knowledge Discovery. DaWaK 2020. Springer, Cha

    Advancing the Understanding of Clinical Sepsis Using Gene Expression-Driven Machine Learning to Improve Patient Outcomes

    Get PDF
    Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This study explored the potential of Machine Learning (ML) techniques to bridge the gap between clinical data and gene expression information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks, deep learning, and ensemble methods, to address key evidence gaps and overcome the challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major hurdle, but ML models offer a workaround by focusing on endpoint prediction. We emphasize the significance of gene transcript information and its use in ML models to provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accuracy and predictive capabilities of ML models for sepsis. Although challenges such as interpretability and bias exist, ML research offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision medicine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation and translation of ML models into clinical practice. ML has the potential to revolutionize our understanding of sepsis and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are needed to fully understand the potential of ML in sepsis management
    corecore