5 research outputs found

    Modeling Rare Interactions in Time Series Data Through Qualitative Change: Application to Outcome Prediction in Intensive Care Units

    Get PDF
    Many areas of research are characterised by the deluge of large-scale highly-dimensional time-series data. However, using the data available for prediction and decision making is hampered by the current lag in our ability to uncover and quantify true interactions that explain the outcomes.We are interested in areas such as intensive care medicine, which are characterised by i) continuous monitoring of multivariate variables and non-uniform sampling of data streams, ii) the outcomes are generally governed by interactions between a small set of rare events, iii) these interactions are not necessarily definable by specific values (or value ranges) of a given group of variables, but rather, by the deviations of these values from the normal state recorded over time, iv) the need to explain the predictions made by the model. Here, while numerous data mining models have been formulated for outcome prediction, they are unable to explain their predictions. We present a model for uncovering interactions with the highest likelihood of generating the outcomes seen from highly-dimensional time series data. Interactions among variables are represented by a relational graph structure, which relies on qualitative abstractions to overcome non-uniform sampling and to capture the semantics of the interactions corresponding to the changes and deviations from normality of variables of interest over time. Using the assumption that similar templates of small interactions are responsible for the outcomes (as prevalent in the medical domains), we reformulate the discovery task to retrieve the most-likely templates from the data.Comment: 8 pages, 3 figures. Accepted for publication in the European Conference of Artificial Intelligence (ECAI 2020

    Semi-supervised Optimal Transport with Self-paced Ensemble for Cross-hospital Sepsis Early Detection

    Full text link
    The utilization of computer technology to solve problems in medical scenarios has attracted considerable attention in recent years, which still has great potential and space for exploration. Among them, machine learning has been widely used in the prediction, diagnosis and even treatment of Sepsis. However, state-of-the-art methods require large amounts of labeled medical data for supervised learning. In real-world applications, the lack of labeled data will cause enormous obstacles if one hospital wants to deploy a new Sepsis detection system. Different from the supervised learning setting, we need to use known information (e.g., from another hospital with rich labeled data) to help build a model with acceptable performance, i.e., transfer learning. In this paper, we propose a semi-supervised optimal transport with self-paced ensemble framework for Sepsis early detection, called SPSSOT, to transfer knowledge from the other that has rich labeled data. In SPSSOT, we first extract the same clinical indicators from the source domain (e.g., hospital with rich labeled data) and the target domain (e.g., hospital with little labeled data), then we combine the semi-supervised domain adaptation based on optimal transport theory with self-paced under-sampling to avoid a negative transfer possibly caused by covariate shift and class imbalance. On the whole, SPSSOT is an end-to-end transfer learning method for Sepsis early detection which can automatically select suitable samples from two domains respectively according to the number of iterations and align feature space of two domains. Extensive experiments on two open clinical datasets demonstrate that comparing with other methods, our proposed SPSSOT, can significantly improve the AUC values with only 1% labeled data in the target domain in two transfer learning scenarios, MIMIC rightarrowrightarrow Challenge and Challenge rightarrowrightarrow MIMIC.Comment: 14 pages, 9 figure
    corecore