4 research outputs found

    Stochastic Geometry-Based Low Latency Routing in Massive LEO Satellite Networks

    Get PDF
    In this paper, the routing in massive low earth orbit (LEO) satellite networks is studied. When the satellite-to-satellite communication distance is limited, we choose different relay satellites to minimize the latency in a constellation at a constant altitude. Firstly, the global optimum solution is obtained in the ideal scenario when there are available satellites at all the ideal locations. Next, we propose a nearest neighbor search algorithm for realistic (non-ideal) scenarios with a limited number of satellites. The proposed algorithm can approach the global optimum solution under an ideal scenario through a finite number of iterations and a tiny range of searches. Compared with other routing strategies, the proposed algorithm shows significant advantages in terms of latency. Furthermore, we provide two approximation techniques that can give tight lower and upper bounds for the latency of the proposed algorithm, respectively. Finally, the relationships between latency and constellation height, satellites' number, and communication distance are investigated

    A Survey on Non-Geostationary Satellite Systems: The Communication Perspective

    Get PDF
    The next phase of satellite technology is being characterized by a new evolution in non-geostationary orbit (NGSO) satellites, which conveys exciting new communication capabilities to provide non-terrestrial connectivity solutions and to support a wide range of digital technologies from various industries. NGSO communication systems are known for a number of key features such as lower propagation delay, smaller size, and lower signal losses in comparison to the conventional geostationary orbit (GSO) satellites, which can potentially enable latency-critical applications to be provided through satellites. NGSO promises a substantial boost in communication speed and energy efficiency, and thus, tackling the main inhibiting factors of commercializing GSO satellites for broader utilization. The promised improvements of NGSO systems have motivated this paper to provide a comprehensive survey of the state-of-the-art NGSO research focusing on the communication prospects, including physical layer and radio access technologies along with the networking aspects and the overall system features and architectures. Beyond this, there are still many NGSO deployment challenges to be addressed to ensure seamless integration not only with GSO systems but also with terrestrial networks. These unprecedented challenges are also discussed in this paper, including coexistence with GSO systems in terms of spectrum access and regulatory issues, satellite constellation and architecture designs, resource management problems, and user equipment requirements. Finally, we outline a set of innovative research directions and new opportunities for future NGSO research

    Towards 6G Through SDN and NFV-Based Solutions for Terrestrial and Non-Terrestrial Networks

    Get PDF
    As societal needs continue to evolve, there has been a marked rise in a wide variety of emerging use cases that cannot be served adequately by existing networks. For example, increasing industrial automation has not only resulted in a massive rise in the number of connected devices, but has also brought forth the need for remote monitoring and reconnaissance at scale, often in remote locations characterized by a lack of connectivity options. Going beyond 5G, which has largely focused on enhancing the quality-of-experience for end devices, the next generation of wireless communications is expected to be centered around the idea of "wireless ubiquity". The concept of wireless ubiquity mandates that the quality of connectivity is not only determined by classical metrics such as throughput, reliability, and latency, but also by the level of coverage offered by the network. In other words, the upcoming sixth generation of wireless communications should be characterized by networks that exhibit high throughput and reliability with low latency, while also providing robust connectivity to a multitude of devices spread across the surface of the Earth, without any geographical constraints. The objective of this PhD thesis is to design novel architectural solutions for the upcoming sixth generation of cellular and space communications systems with a view to enabling wireless ubiquity with software-defined networking and network function virtualization at its core. Towards this goal, this thesis introduces a novel end-to-end system architecture for cellular communications characterized by innovations such as the AirHYPE wireless hypervisor. Furthermore, within the cellular systems domain, solutions for radio access network design with software-defined mobility management, and containerized core network design optimization have also been presented. On the other hand, within the space systems domain, this thesis introduces the concept of the Internet of Space Things (IoST). IoST is a novel cyber-physical system centered on nanosatellites and is capable of delivering ubiquitous connectivity for a wide variety of use cases, ranging from monitoring and reconnaissance to in-space backhauling. In this direction, contributions relating to constellation design, routing, and automatic network slicing form a key aspect of this thesis.Ph.D

    Temporal Netgrid Model-Based Dynamic Routing in Large-Scale Small Satellite Networks

    No full text
    corecore