33,470 research outputs found

    Temporal Logics on Words with Multiple Data Values

    Get PDF
    The paper proposes and studies temporal logics for attributed words, that is, data words with a (finite) set of (attribute,value)-pairs at each position. It considers a basic logic which is a semantical fragment of the logic LTLdownarrow1LTL^downarrow_1 of Demri and Lazic with operators for navigation into the future and the past. By reduction to the emptiness problem for data automata it is shown that this basic logic is decidable. Whereas the basic logic only allows navigation to positions where a fixed data value occurs, extensions are studied that also allow navigation to positions with different data values. Besides some undecidable results it is shown that the extension by a certain UNTIL-operator with an inequality target condition remains decidable

    Ordered Navigation on Multi-attributed Data Words

    Full text link
    We study temporal logics and automata on multi-attributed data words. Recently, BD-LTL was introduced as a temporal logic on data words extending LTL by navigation along positions of single data values. As allowing for navigation wrt. tuples of data values renders the logic undecidable, we introduce ND-LTL, an extension of BD-LTL by a restricted form of tuple-navigation. While complete ND-LTL is still undecidable, the two natural fragments allowing for either future or past navigation along data values are shown to be Ackermann-hard, yet decidability is obtained by reduction to nested multi-counter systems. To this end, we introduce and study nested variants of data automata as an intermediate model simplifying the constructions. To complement these results we show that imposing the same restrictions on BD-LTL yields two 2ExpSpace-complete fragments while satisfiability for the full logic is known to be as hard as reachability in Petri nets

    Flow Logic

    Full text link
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or ≥γ\geq \gamma, for γ∈N\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Time window temporal logic

    Full text link
    This paper introduces time window temporal logic (TWTL), a rich expressive language for describing various time bounded specifications. In particular, the syntax and semantics of TWTL enable the compact representation of serial tasks, which are prevalent in various applications including robotics, sensor systems, and manufacturing systems. This paper also discusses the relaxation of TWTL formulae with respect to the deadlines of the tasks. Efficient automata-based frameworks are presented to solve synthesis, verification and learning problems. The key ingredient to the presented solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the given formula. Some case studies are presented to illustrate the expressivity of the logic and the proposed algorithms

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Time Window Temporal Logic

    Full text link
    This paper introduces time window temporal logic (TWTL), a rich expressivity language for describing various time bounded specifications. In particular, the syntax and semantics of TWTL enable the compact representation of serial tasks, which are typically seen in robotics and control applications. This paper also discusses the relaxation of TWTL formulae with respect to deadlines of tasks. Efficient automata-based frameworks to solve synthesis, verification and learning problems are also presented. The key ingredient to the presented solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the specification. Case studies illustrating the expressivity of the logic and the proposed algorithms are included
    • …
    corecore