140,501 research outputs found

    Multi-Agent Robust Control Synthesis from Global Temporal Logic Tasks

    Full text link
    This paper focuses on the heterogeneous multi-agent control problem under global temporal logic tasks. We define a specification language, called extended capacity temporal logic (ECaTL), to describe the required global tasks, including the number of times that a local or coupled signal temporal logic (STL) task needs to be satisfied and the synchronous requirements on task satisfaction. The robustness measure for ECaTL is formally designed. In particular, the robustness for synchronous tasks is evaluated from both the temporal and spatial perspectives. Mixed-integer linear constraints are designed to encode ECaTL specifications, and a two-step optimization framework is further proposed to realize task-satisfied motion planning with high spatial robustness and synchronicity. Simulations are conducted to demonstrate the expressivity of ECaTL and the efficiency of the proposed control synthesis approach.Comment: 7 pages, 3 figure

    Formal Synthesis of Control Strategies for Positive Monotone Systems

    Full text link
    We design controllers from formal specifications for positive discrete-time monotone systems that are subject to bounded disturbances. Such systems are widely used to model the dynamics of transportation and biological networks. The specifications are described using signal temporal logic (STL), which can express a broad range of temporal properties. We formulate the problem as a mixed-integer linear program (MILP) and show that under the assumptions made in this paper, which are not restrictive for traffic applications, the existence of open-loop control policies is sufficient and almost necessary to ensure the satisfaction of STL formulas. We establish a relation between satisfaction of STL formulas in infinite time and set-invariance theories and provide an efficient method to compute robust control invariant sets in high dimensions. We also develop a robust model predictive framework to plan controls optimally while ensuring the satisfaction of the specification. Illustrative examples and a traffic management case study are included.Comment: To appear in IEEE Transactions on Automatic Control (TAC) (2018), 16 pages, double colum

    Flow Logic

    Get PDF
    Flow networks have attracted a lot of research in computer science. Indeed, many questions in numerous application areas can be reduced to questions about flow networks. Many of these applications would benefit from a framework in which one can formally reason about properties of flow networks that go beyond their maximal flow. We introduce Flow Logics: modal logics that treat flow functions as explicit first-order objects and enable the specification of rich properties of flow networks. The syntax of our logic BFL* (Branching Flow Logic) is similar to the syntax of the temporal logic CTL*, except that atomic assertions may be flow propositions, like >γ> \gamma or γ\geq \gamma, for γN\gamma \in \mathbb{N}, which refer to the value of the flow in a vertex, and that first-order quantification can be applied both to paths and to flow functions. We present an exhaustive study of the theoretical and practical aspects of BFL*, as well as extensions and fragments of it. Our extensions include flow quantifications that range over non-integral flow functions or over maximal flow functions, path quantification that ranges over paths along which non-zero flow travels, past operators, and first-order quantification of flow values. We focus on the model-checking problem and show that it is PSPACE-complete, as it is for CTL*. Handling of flow quantifiers, however, increases the complexity in terms of the network to PNP{\rm P}^{\rm NP}, even for the LFL and BFL fragments, which are the flow-counterparts of LTL and CTL. We are still able to point to a useful fragment of BFL* for which the model-checking problem can be solved in polynomial time. Finally, we introduce and study the query-checking problem for BFL*, where under-specified BFL* formulas are used for network exploration

    A provably correct MPC approach to safety control of urban traffic networks

    Full text link
    Model predictive control (MPC) is a popular strategy for urban traffic management that is able to incorporate physical and user defined constraints. However, the current MPC methods rely on finite horizon predictions that are unable to guarantee desirable behaviors over long periods of time. In this paper we design an MPC strategy that is guaranteed to keep the evolution of a network in a desirable yet arbitrary -safe- set, while optimizing a finite horizon cost function. Our approach relies on finding a robust controlled invariant set inside the safe set that provides an appropriate terminal constraint for the MPC optimization problem. An illustrative example is included.This work was partially supported by the NSF under grants CPS-1446151 and CMMI-1400167. (CPS-1446151 - NSF; CMMI-1400167 - NSF

    Model Predictive Control for Signal Temporal Logic Specification

    Get PDF
    We present a mathematical programming-based method for model predictive control of cyber-physical systems subject to signal temporal logic (STL) specifications. We describe the use of STL to specify a wide range of properties of these systems, including safety, response and bounded liveness. For synthesis, we encode STL specifications as mixed integer-linear constraints on the system variables in the optimization problem at each step of a receding horizon control framework. We prove correctness of our algorithms, and present experimental results for controller synthesis for building energy and climate control

    Situation awareness and ability in coalitions

    Get PDF
    This paper proposes a discussion on the formal links between the Situation Calculus and the semantics of interpreted systems as far as they relate to Higher-Level Information Fusion tasks. Among these tasks Situation Analysis require to be able to reason about the decision processes of coalitions. Indeed in higher levels of information fusion, one not only need to know that a certain proposition is true (or that it has a certain numerical measure attached), but rather needs to model the circumstances under which this validity holds as well as agents' properties and constraints. In a previous paper the authors have proposed to use the Interpreted System semantics as a potential candidate for the unification of all levels of information fusion. In the present work we show how the proposed framework allow to bind reasoning about courses of action and Situation Awareness. We propose in this paper a (1) model of coalition, (2) a model of ability in the situation calculus language and (3) a model of situation awareness in the interpreted systems semantics. Combining the advantages of both Situation Calculus and the Interpreted Systems semantics, we show how the Situation Calculus can be framed into the Interpreted Systems semantics. We illustrate on the example of RAP compilation in a coalition context, how ability and situation awareness interact and what benefit is gained. Finally, we conclude this study with a discussion on possible future works
    corecore