12 research outputs found

    Stealthy Opaque Predicates in Hardware -- Obfuscating Constant Expressions at Negligible Overhead

    Full text link
    Opaque predicates are a well-established fundamental building block for software obfuscation. Simplified, an opaque predicate implements an expression that provides constant Boolean output, but appears to have dynamic behavior for static analysis. Even though there has been extensive research regarding opaque predicates in software, techniques for opaque predicates in hardware are barely explored. In this work, we propose a novel technique to instantiate opaque predicates in hardware, such that they (1) are resource-efficient, and (2) are challenging to reverse engineer even with dynamic analysis capabilities. We demonstrate the applicability of opaque predicates in hardware for both, protection of intellectual property and obfuscation of cryptographic hardware Trojans. Our results show that we are able to implement stealthy opaque predicates in hardware with minimal overhead in area and no impact on latency

    Incomplete SMT techniques for solving non-linear formulas over the integers

    Get PDF
    We present new methods for solving the Satisfiability Modulo Theories problem over the theory of QuantifierFree Non-linear Integer Arithmetic, SMT(QF-NIA), which consists of deciding the satisfiability of ground formulas with integer polynomial constraints. Following previous work, we propose to solve SMT(QF-NIA) instances by reducing them to linear arithmetic: non-linear monomials are linearized by abstracting them with fresh variables and by performing case splitting on integer variables with finite domain. For variables that do not have a finite domain, we can artificially introduce one by imposing a lower and an upper bound and iteratively enlarge it until a solution is found (or the procedure times out). The key for the success of the approach is to determine, at each iteration, which domains have to be enlarged. Previously, unsatisfiable cores were used to identify the domains to be changed, but no clue was obtained as to how large the new domains should be. Here, we explain two novel ways to guide this process by analyzing solutions to optimization problems: (i) to minimize the number of violated artificial domain bounds, solved via a Max-SMT solver, and (ii) to minimize the distance with respect to the artificial domains, solved via an Optimization Modulo Theories (OMT) solver. Using this SMT-based optimization technology allows smoothly extending the method to also solve Max-SMT problems over non-linear integer arithmetic. Finally, we leverage the resulting Max-SMT(QF-NIA) techniques to solve ∃∀ formulas in a fragment of quantified non-linear arithmetic that appears commonly in verification and synthesis applications.Peer ReviewedPostprint (author's final draft

    Program Synthesis Using Dual Interpretation

    Get PDF

    HAL — The Missing Piece of the Puzzle for Hardware Reverse Engineering, Trojan Detection and Insertion

    Get PDF
    Hardware manipulations pose a serious threat to numerous systems, ranging from a myriad of smart-X devices to military systems. In many attack scenarios an adversary merely has access to the low-level, potentially obfuscated gate-level netlist. In general, the attacker possesses minimal information and faces the costly and time-consuming task of reverse engineering the design to identify security-critical circuitry, followed by the insertion of a meaningful hardware Trojan. These challenges have been considered only in passing by the research community. The contribution of this work is threefold: First, we present HAL, a comprehensive reverse engineering and manipulation framework for gate-level netlists. HAL allows automating defensive design analysis (e.g., including arbitrary Trojan detection algorithms with minimal effort) as well as offensive reverse engineering and targeted logic insertion. Second, we present a novel static analysis Trojan detection technique ANGEL which considerably reduces the false-positive detection rate of the detection technique FANCI. Furthermore, we demonstrate that ANGEL is capable of automatically detecting Trojans obfuscated with DeTrust. Third, we demonstrate how a malicious party can semi-automatically inject hardware Trojans into third-party designs. We present reverse engineering algorithms to disarm and trick cryptographic self-tests, and subtly leak cryptographic keys without any a priori knowledge of the design’s internal workings
    corecore