1,023,141 research outputs found
How Predictable are Temperature-series Undergoing Noise-controlled Dynamics in the Mediterranean
Mediterranean is thought to be sensitive to global climate change, but its future interdecadal variability is uncertain for many climate models. A study was made of the variability of the winter temperature over the Mediterranean Sub-regional Area (MSA), employing a reconstructed temperature series covering the period 1698 to 2010. This paper describes the transformed winter temperature data performed via Empirical Mode Decomposition for the purposes of noise reduction and statistical modeling. This emerging approach is discussed to account for the internal dependence structure of natural climate variability
Study of the Effect of Hot Rolling Processing Parameters on the Variability of HSLA Steels
The effect of different hot mill processing parameters and their influence on the variability of mechanical properties of HSLA steels has been studied. This work presents an analysis of the relative contribution of the different hot mill processing parameters to the variability of HSLA steels. The experimental design includes variation of Reheating, Roughing, Finishing, and Coiling temperatures, as well as Cooling Rate through the austenite to ferrite transformation, and from coiling to room temperature. The variation in finishing and coiling temperature results in an average variation of 12% in mechanical properties. The variation of the cooling rate, through the austenite to ferrite transformation, and from coiling to room temperature, has the largest impact on the variability of microstructure and properties. A correlation between the various microstructural features, dislocation densities and precipitation behavior, with mechanical properties is presented
Assessment of intraspecies variability in fungal growth initiation of Aspergillus flavus and aflatoxin B1 production under static and changing temperature levels using different initial conidial inoculum levels
Intraspecies variability in fungal growth and mycotoxin production has important implications for food safety. Using the Bioscreen C we have examined spectrophotometrically intraspecies variability of A. flavus using 10 isolates under different environments, including temperature shifts, in terms of growth and aflatoxin B1 (AFB1) production. Five high and five low AFB1 producers were examined. The study was conducted at 5 isothermal conditions (from 15 to 37 °C) and 4 dynamic scenarios (between 15 and 30 °C). The experiments were carried out in a semisolid YES medium at 0.92 aw and two inoculum levels, 102 and 103 spores/mL. The Time to Detection (TTD) of growth initiation was determined and modelled as a function of temperature through a polynomial equation and the model was used to predict TTD under temperature upshifts conditions using a novel approach. The results obtained in this study have shown that a model can be developed to describe the effect of temperature upshifts on the TTD for all the studied isolates and inoculum levels. Isolate variability increased as the growth conditions became more stressful and with a lower inoculum level. Inoculum level affected the intraspecies variability but not the repeatability of the experiments. In dynamic conditions, isolate responses depended both on the temperature shift and, predominantly, the final temperature level. AFB1 production was highly variable among the isolates and greatly depended on temperature (optimum temperature at 30-35 °C) and inoculum levels, with often higher production with lower inoculum. This suggests that, from an ecological point of view, the potential isolate variability and interaction with dynamic conditions should be taken into account in developing strategies to control growth and predicting mycotoxin risks by mycotoxigenic fungi.The authors are grateful to the Agència de Gestió d'Ajuts Universitaris i de Recerca de la Generalitat de Catalunya (AGAUR, grant 2014FI_B 00045), and to the Spanish Ministry of Economy and Competitiveness (MINECO, Project AGL2014-55379-P) for funding this work. The authors also would like to thank Dr. Ronald J.W. Lambert for kindly providing the TTD calculation Excel spreadsheet
Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations
Urbanization and climate change are driving increases in urban land surface temperatures that pose a threat to human and environmental health. To address this challenge, we must be able to observe land surface temperatures within spatially complex urban environments. However, many existing remote sensing studies are based upon satellite or aerial imagery that capture temperature at coarse resolutions that fail to capture the spatial complexities of urban land surfaces that can change at a sub-meter resolution. This study seeks to fill this gap by evaluating the spatial variability of land surface temperatures through drone thermal imagery captured at high-resolutions (13 cm). In this study, flights were conducted using a quadcopter drone and thermal camera at two case study locations in Milwaukee, Wisconsin and El Paso, Texas. Results indicate that land use types exhibit significant variability in their surface temperatures (3.9–15.8 °C) and that this variability is influenced by surface material properties, traffic, weather and urban geometry. Air temperature and solar radiation were statistically significant predictors of land surface temperature (R2 0.37–0.84) but the predictive power of the models was lower for land use types that were heavily impacted by pedestrian or vehicular traffic. The findings from this study ultimately elucidate factors that contribute to land surface temperature variability in the urban environment, which can be applied to develop better temperature mitigation practices to protect human and environmental health
Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean
The eastern equatorial Atlantic Ocean is subject to interannual fluctuations of sea surface temperatures, with climatic impacts on the surrounding continents. The dynamic mechanism underlying Atlantic temperature variability is thought to be similar to that of the El Nino/Southern Oscillation (ENSO) in the equatorial Pacific, where air-sea coupling leads to a positive feedback between surface winds in the western basin, sea surface temperature in the eastern basin, and equatorial oceanic heat content. Here we use a suite of observational data, climate reanalysis products, and general circulation model simulations to reassess the factors driving the interannual variability. We show that some of the warm events can not be explained by previously identified equatorial wind stress forcing and ENSO-like dynamics. Instead, these events are driven by a mechanism in which surface wind forcing just north of the equator induces warm ocean temperature anomalies that are subsequently advected toward the equator. We find the surface wind patterns are associated with long-lived subtropical sea surface temperature anomalies and suggest they therefore reflect a link between equatorial and subtropical Atlantic variability
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013
This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5-1m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ~150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ~415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal resolution highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques
Climate Change Impact on Rice Yield and Production Risk
The relationship among rice yield and weather variables in Korea is explored using a stochastic production function. The results reveal that average rice yield is positively related to temperature and negatively associated with precipitation. Both temperature and precipitation, which are risk-increasing inputs, are positively related to rice yield variability. The widened yield variability can be transferred to the fluctuation of rice production and rice price instability. Larger market risk is expected in the future since both temperature and precipitation are anticipated to increase. An evaluation of climate change impact on rice yield variability reveals that it may increase by up to 10%~20%. Reducing yield variability and managing market risk would be the primary goals of the government's farm policy and research.climate change, production risk, stochastic production function, Agribusiness, Agricultural and Food Policy, Crop Production/Industries, Environmental Economics and Policy, Production Economics,
Relation between source and temperature fluctuations in photoionized nebulae
The magnitude of the temperature fluctuations (t^2) required to explain the
observed inconsistencies between metallicities inferred from recombination
lines and from forbidden lines cannot be attained by steady-state equilibrium
photoionization models. If on the other hand the nebular ionizing source was
variable, the temperature fluctuations t^2 would be significantly larger. We
investigate the time-dependent response of the nebular ionization and
temperature structure when photoionized by a periodically varying source. We
study how the asymptotic mean value, , behaves as a function of the period
or amplitude of the source variability. We find that the temperature
fluctuations occur only in the outer section of the nebula, close to the
ionization front, within a zone corresponding to 8-20% of the ionized layer's
thickness. We conclude that the amplitude of the exciting star variations
required to achieve a = 0.025 (as in the Orion nebula) is unacceptably
large. Source variability is therefore not a viable mechanism to explain the
observed values of t^2. We reach a similar conclusion from studies of the
temporal variability resulting from intermittent shadows behind opaque
condensations. We find that photoionized nebulae are on average less massive
but somewhat hotter in the case of cyclicly variable ionizing sources.Comment: 15 pages, 6 figures, submitted to Revista Mexicana de Astronomia y
Astrofisica, revised versio
- …
