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Introduction 
 

Su i dodici del ciel segni divisi 
Regola il mondo, e le stagioni alterna. 
Partesi il globo in cinque zone, e l’una 
Di loro ai raggi del cocente sole … 
Dei poli estremi, da perpetuo gelo … 
Ma fra queste, e la prima in mezzo chiuse 
Stan le altre due, che temperate e miti 
Concesse il Ciel ai miseri mortali. 
 

Publio Virgilio Marone – Georgiche, Libro primo (vs. 365-375) 

 

cientists have long employed Global Circulation Models (GCMs) to 

answer about the future of the Earth’s climate because they provide 

the opportunity to vary the parameters involved. However, the GCMs 

establish a limited number of functional relationships and forcing agents and 

are known to be affected by a large degree of uncertainty (modelling, 

downscaling, initialization). Besides an incomplete knowledge or 

understanding of a particular process (epistemic uncertainty), a central 

problem are the unpredictability, partly inconsistent with the observed 

warming during the industrial period (Knutti et al., 2008). Another restraint 

of the GCMs is that it is unlike that this mixture of funtional relationships and 

alternative parameterization may be used by a large community of users and 

for decision-making, being limited to special interest and minority groups of 

scientists needing the low-flexibility this makes available. 
 

_____________________________________________________________ 
 

* Work developed on behalf of Met European Research Observatory, as part of ongoing ECP(ESD)–Ensemble 
     Climate Prediction project. 
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 Attempts are being made by the scientic community towards alternative 

solutions to the overrepresented GCMs. Concerning the predictability efforts, 

approaches suitable for climate studies (other than the GCMs) are referred by 

Alexiadis (2007) and Viola et al. (2010): Model-Based Methods (MBMs), 

Planet’s Dynamic Models (PDMs), and models built upon Time Series Analysis 

(TSA). They represent the climate system in a conceptual way. This is why 

they can be useful for a broad range of users to gain qualitative 

understanding of both the climate system and the relationship between the 

models and the modelled real-world system. The atmosphere itself remains, 

however, the most important limiting factor to human ability to forecast 

climate, and the unpredictability inherent to the system is more important 

than computer power or data availability and accuracy (Singleton, 2010). It is 

growing in the scientific community awareness that the atmosphere and oceans 

form a complex interactive system with unpredictable shift and unexpected 

extremes (e.g., Mazzarella, 2009). Therefore, we should expect a degree of 

irreducible inaccuracy in quantitative correspondences with nature, even with 

plausibly formulated models and careful calibration (tuning) against several 

empirical measures (McWilliams, 2007). 

In the meanwhile that new Earth climate models (e.g., those of intermediate 

complexity, Weber, 2010) become more realistic for decadal prediction, 

approaches based on time-series analysis which tries to build a model from 

experimental data can be addressed for exploratory and forecasting purposes. 

This would make climate research more reproducible by a large community of 

scientists and managers that can re-create the research outcomes. In such 

respect, online statistical tools can accommodate climate historical records by 

means of memory-based autoregressive methods. A similar approach, reversing 

the direction of the natural progression of time, allows to “experience” in reality 

what happened in the past in order to search out a “attractor memory” (after 

Nicolis and Nicolis, 1986). The response of these model is important because 

it takes into account all the possible natural processes involved in the 

evolution of climate records (Enzi and Camuffo, 1991). In this context, a 

possible approach consists to see the Earth climatic system as qualifyied by a 

linear-and-chaotic attractor. Therefore, by decomposing a climatic time-series 

as a sum of explicit periodic-regimes and a random noise component, these 

components can be modelled separately (after Nikovski and Ramachandran, 

2009). However, the classical time-series prediction methodologies that are 

based on auto-regressive exponential models can present large noise making 

very difficult their predictability. 

This contribution deals with time series analysis related to temperature 

dynamics. It explores a long temperature series, transformed by means of 

Empirical Mode Decomposition (EMD, after Huang et al., 1998). The 

Mediterran Sub-regional Area (MSA) is the focus of this study because it is now 

available an accurate long-time series of mean winter temperatures (Diodato 

et al., 2010).  
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For the Mediterranean region, the projections by the global and regional 

model simulations are generally consistent with each other at the broad scale 

(Giorgi and Lionello, 2008). A lengthy temperature series available at fianre 

spatial resolution offers a unique opportunity to explore past interdecadal 

climate variability, and to (try to) use its internal dependence structure to 

replicate future temperature ramification at sub-regional scale. The sub-

regional scale (as that represented by the MSA) is also important to extract 

information representative of natural climate variability (after Stott et al., 

2010) for used in statistically based-models. 

 

2. Data and methods 

The Mediterran Sub-regional Area (MSA) it is a circum-Thyrrenian region 

(Figure 1), part of the larger Mediterranen Central Area (MCA) defined by 

Diodato and Bellocchi (2010). The MSA climate is characterized by the polar-

ward (summer) and equator-ward (winter) shift of the Azores subtropical high-

pressure cell (Camuffo et al., 2010). 
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Figure 1. a): Geographical setting of Mediterranean Sub-regional Area (MSA), and 
b): Winter temperature pattern averaged over 1961-1990 over MSA (arranged by 
LocClim FAO software with 10-km resolution, http://www.fao.org/sd/locclim/srv/locclim.home). 

 

 

Especially in the cold season (October-March), the area is frequently crossed 

by depressions generating over the Mediterranean Sea (Wigley, 1992) that, 

reinforced by continental north-easterly airflows, produce important 

fluctuations in temperature and precipitation (Barriendos Vallve and Martin-

Vide, 1998). However, the MSA can be considered homogeneous with respect 

to temperature, as the spatial correlation map shows in Figure 1a. 

The earliest regular instrumental observations started in Italy over the 17th 

century, when temperature readings were recorded up to eight times a day 

(Camuffo and Jones, 2002). However, it was only after 1860, which marked 

the unification of Italy, that temperatures were recorded from a dense 

network of stations.  
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 In Europe, a first effort for reconstructing a long history of homogeneous 

dataset was made by Luterbacher et al. (2004), who produced data upscaled 

to a 0.25 x 0.25 degree grid resolution from past instrumental series and 

multi-proxy data since 1500. For the MCA, the major effort devoted to 

transform early, never-before utilized observations into modern-high series 

through rigorous quality controls, validation, correction and homogenization 

was possible after the 17th century (Camuffo et al., 2010).  

Diodato et al. (2010) used the basic datasets of Luterbacher et al. (2004) and 

Camuffo et al. (2010) to generate, for the MSA, the series of winter 

temperatures (1698-2010) used in this work. Sources and validation of these 

documentary observations date since the first instrumental  measurements 

started in Naples as early as 1727 thanks to Domenico Cirilloa and published 

through the Meteorological Diaries of the Royal Society of London (Figure 2, 

left). The observations became systematic since 1821 and were published by 

the Annals of  the Kingdom of Naples (Figure 2, central and right). 

 

Th e  R o y a l  S o c i e t y  o f  

Lo n d o n

PHYLOSOPHICAL
TRANSACTIONS

 
 

Figure 2. Cover page (left) of Philosophical Transactions (Royal Society of London), 
which published the first instrumental weather observations performed at Naples by 
Domenico Cirillo (Derham, 1733-1734). Cover page (centre) and exemplary pages (right) 
of the Annals of  the Kingdom of Naples (edition of February 1842) which published the 
meteorological observations systematically performed between 1833 and 1857. 

 

Time series are generally sequences of records of one or more observable 

variables of an underlying dynamical system, whose state changes with time 

as a function of its current state vector. The analysis of the statistically 

significant systematic and random fluctuations of such records provides 

important information for climate change studies and for statistical modelling 

and long-range climate forecats. The time series analysis of winter 

temperature series was performed by online tools: MatLab routine 

(http://www.mathworks.nl/matlabcentral/fileexchange/21409-empirical-mode-decomposition) 

for denoised temperature-series, AnClim (http://www.climahom.eu/AnClim.html, 

Stepanek, 2007) and Visual Recurrence Analysis (http://nonlinear.110mb.com/vra) 

for an exploratory data and chaotic analysis of the time-series, respectively. 
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2. Exploratory data analysis 

Exploratory procedures aim at knowing the temporal-pattern and time-

variability of the process for the original temperature-series. For winter 

temperature dynamics across the MSA, a non-stationarity structure was found 

(Figure 3a). An important finding is the existence of a compact and chaotic 

trajectory in time-space domain, which can be seen to evolve to certain 

temperature predictability (Figure 3b). This issue is explored more in-depth in the 

next section. Regardless of the predictability statistics, these series may be non-

stationary (yet in high order moments), which makes difficult to study their 

evolution. With a main discontinuity period occurring around the 1960s, Figure 3a 

gives visual clue to the inherent complexity of Mediterranean temperature series. 

 
a) b)

 
 
Figure 3. a): Temporal-pattern in winter temperature original-series (1698-2010) 
with overimposed jump in data before and after the year 1955 (horizontal lines) 
arranged by AnClim software, and b): Its attractor in phase-space domain, arranged 
by the Visual Recurrence Analysis software. 

 

3. Time-serie pattern noise reduction and predictability 

Recent advances in the field of Digital Signal Processing (DSP) have 

addressed the denoising of signals by using various filtering algorithms 

(Ingad, 2009). Moving-window techniques are commonly used for the 

extraction of time-varying signals from actual observations (Gather et al., 

2006). However, such techniques cannot cope with the complexity of 

nonlinear and nonstationary phenomena. If the data are corrupted with noise 

at specific frequencies, Moving Average (MA) filters perform poorly by 

introducing biases (Ott, 1988) because they act as low-pass filters with poor 

ability to filter noise at individual frequency (Smith, 1999). Fast Fourier 

Transform (FFT) based filters provide accurate information about the 

frequency content of the data, which is used for filtering of noise. However, 

FFT assumes that the data are stationary. Noise in nonstationary data can be 

handled using techniques like Short-Time Fourier Transform (STFT) and 

wavelet transformed-based filters, developed to handle transient data 

corrupted with nonstationary noise (mean and variance of noise varies with 

respect to time). STFT is based on the principle of dividing the data into 

various stationary segments (mean of the signal remains constant in this 

segment) followed by application of an FFT-based filter for each individual 
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segment (Cohen, 1995). STFT requires identification of an optimal window 

length within which the data is stationary, which is difficult. If the window size 

is small, it is not possible to separate narrow frequency bands. This in turn 

leads to difficulty in filtering narrow band noise. It is also often not possible to 

find large stationary segments in the data of interest. Discrete Wavelet 

Transform (DWT) filters are widely used to overcome the drawbacks 

associated with STFT filters (Mallat, 1999), but cannot be effectively used for 

filtering signals corrupted with narrow band and nonlinear noise sources. 

More recently, Empirical Mode Decomposition (EMD), a time-domain 

algorithm, has been developed for handling nonstationary and nonlinear 

signals (Huang et al., 1998, 1999, 2006). EMD is the key part of the Hilbert–

Huang Transform (HHT) method. Using the EMD, any complicated data set 

can be decomposed into a finite and often small number of components, 

which is a collection of “Intrinsic Mode Functions” (IMF). An IMF represents 

the characteristic features of the data at various time scales. It is an 

oscillatory mode as a counterpart to the simple harmonic function, but it is 

much more general: instead of constant amplitude and frequency in a simple 

harmonic component, an IMF can have variable amplitude and frequency 

along the time axis. In this way, the decomposition method operating in the 

time domain is adaptive and highly efficient. Since the decomposition is based 

on the local characteristic time scale of the data, it can be applied to nonlinear 

and nonstationary processes. Salisbury and Wimbush (2002), using Southern 

Oscillation Index (SOI) data, applied the HHT technique to determine whether 

the SOI data are sufficiently noise-free that useful predictions can be made and 

whether future El Niño Southern Oscillation (ENSO) events can be predicted 

from SOI data. Datig and Schlurmann (2004) noted that HHT is capable of 

differentiating between time-variant components from any given data. EMD has 

proven to be quite versatile in a broad range of applications for extracting 

signals from data generated in noisy nonlinear and nonstationary processes 

(Wu and Huang, 2008). Kollengodu-Subramanian et al. (2011) illustrate the 

effectiveness of the EMD-based filtering approach by a comparison study with 

MA filters, FFT- and DWT-based filtering methods. Applying the EMD algorithm 

to the signal x(t) gives: 

 

∑
=

+=
N

k
kn tdtmtx

1

)()()(  

 

where mn(t) is the trend component, dk(t) is the k
th IMF with k varying from 1 

to the number of IMFs, N. Once IMFs are obtained from the EMD algorithm, 

the next step is to identify and eliminate the IMFs corresponding to noise 

components. The seminal literature discusses elaborately the EMD-based DSP 

filtering approach (which is not reproduced in detail here). 

With the aid of the EMD procedure, a cleaner representation of winter 

temperature dynamics in the MSA was obtained. We have assembled 

temperature-series by EMD running data (Figure 4a), successively named 
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decomposed winter temperature data [Twin(EMD)]. This is meant to reduce 

noise and to explore chaotic properties and predictability of original time series 

(after Kawamura et al., 1998). As it appears from Figure 4b, the attractor for 

the denoised series is in fact different from the one in Figure 3b. Although still 

encapsuled, we can use this new-and-manifest trajectory path as an indication 

of predictability. 

 
a) b)

 
 
Figure 4. a) Temporal-pattern in winter temperature for the original time-series (bleu 
line) and for EMD- transformed data series (red curve); b): Attractor in phase-space 
domain for Twin(EMD) data-series. 

 

 

4. Concluding remarks 

In the past decades, there has been an increasing interest for the long-term 

climate forecasting. However, many of these studies have not adequately 

examined key issues, and  relied on research processes that slowed the 

exchange of information among physical, biological and social scientists (Moss 

et al., 2010). Weather data are invariably corrupted with some form of noise, 

and noisy data are still an issue for climatology. Effective removal of noise 

from data is important for better understanding and interpretation of time 

series. In this contribution, we have applied an Empirical Mode Decomposition 

based approach to a winter temperature series in the Mediterranean Sub-

regional Area. Time-dependent spectral representation shows signs of 

predicibility, and this could be the basis for creating reproducible and plausible 

scenarios of climate realizations (of support for the scientific community and 

managers alike). The authors wish to stress that all steps made in this paper 

do certainly need verification and further improvements. However, its 

significance and need for development is outlined and should encourage 

closer investigation by other researchers working in this field. 
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