104 research outputs found

    Perfect Teleportation and Superdense Coding With W-States

    Get PDF
    True tripartite entanglement of the state of a system of three qubits can be classified on the basis of stochastic local operations and classical communications (SLOCC). Such states can be classified in two categories: GHZ states and W-states. It is known that GHZ states can be used for teleportation and superdense coding, but the prototype W-state cannot be. However, we show that there is a class of W-states that can be used for perfect teleportation and superdense coding.Comment: 9 pages, no figur

    Completely mixed state is a critical point for three-qubit entanglement

    Full text link
    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement.Comment: two references are added, reshaped, few points are clarifie

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex

    Quantum cobwebs: Universal entangling of quantum states

    Full text link
    Entangling an unknown qubit with one type of reference state is generally impossible. However, entangling an unknown qubit with two types of reference states is possible. To achieve this, we introduce a new class of states called zero sum amplitude (ZSA) multipartite, pure entangled states for qubits and study their salient features. Using shared-ZSA state, local operation and classical communication we give a protocol for creating multipartite entangled states of an unknown quantum state with two types of reference states at remote places. This provides a way of encoding an unknown pure qubit state into a multiqubit entangled state. We quantify the amount of classical and quantum resources required to create universal entangled states. This is possibly a strongest form of quantum bit hiding with multiparties.Comment: Invited talk in II Winter Institute on FQTQO: Quantum Information Processing, held at S. N. Bose Center for Basic Science, Kolkata, during Jan 2-11, 2002. (To appear in Pramana-J. of Physics, 2002.

    Greenberger-Horne-Zeilinger state generation with linear optical elements

    Get PDF
    We propose a scheme to probabilistically generate Greenberger-Horne-Zeilinger (GHZ) states encoded on the path degree of freedom of three photons. These photons are totally independent from each other, having no direct interaction during the whole evolution of the protocol, which remarkably requires only linear optical devices to work, and two extra ancillary photons to mediate the correlation. The efficacy of the method, which has potential application in distribited quantum computation and multiparty quantum communication, is analyzed in comparison with similar proposals reported in the recent literature. We also discuss the main error sources that limit the efficiency of the protocol in a real experiment and some interesting aspects about the mediator photons in connection with the concept of spatial nonlocality
    corecore