6 research outputs found

    Failure tolerant teleoperation of a kinematically redundant manipulator: an experimental study

    Get PDF
    Includes bibliographical references (page 880).Teleoperated robots in harsh environments have a significant likelihood of failures. It has been shown in previous work that a common type of failure such as that of a joint "locking up", when unidentified by the robot controller, can cause considerable performance degradation in the local behavior of the manipulator even for simple point-to-point motion tasks. The effects of a failure become more critical for a system with a human in the loop, where unpredictable behavior of the robotic arm can completely disorient the operator. In this experimental study involving teleoperation of a graphically simulated kinematically redundant manipulator, two control schemes, the pseudoinverse and a proposed failure-tolerant inverse, were randomly presented under both non-failure and failure scenarios to a group of operators. Based on performance measures derived from the recorded trajectory data and operator responses, it is seen that the failure tolerant inverse kinematic control scheme improved the performance of the human/robot system

    Failure tolerant teleoperation of a kinematically redundant manipulator: an experimental study

    Get PDF
    Includes bibliographical references (page 765).Teleoperated robots in harsh environments have a significant likelihood of failures. It has been shown in previous work that a common type of failure such as that of a joint "locking up," when unidentified by the robot controller, can cause considerable performance degradation in the local behavior of the manipulator even for simple point-to-point motion tasks. The effects of a failure become more critical for a system with a human in the loop, where unpredictable behavior of the robotic arm can completely disorient the operator. In this experimental study involving teleoperation of a graphically simulated kinematically redundant manipulator, two control schemes, the pseudoinverse and a proposed failure-tolerant inverse, were randomly presented under both nonfailure and failure scenarios to a group of operators. Based on performance measures derived from the recorded trajectory data and operator ratings of task difficulty, it is seen that the failure-tolerant inverse kinematic control scheme improved the performance of the human/robot system

    A Cartesian Space Approach to Teleoperate a Slave Robot with a Kinematically Dissimilar Redundant Manipulator

    Get PDF
    Due to the inability of humans to interact with certain unstructured environments,telemanipulation of robots have gained immense importance. One of the primary tasks in telemanipulating robots remotely, is the effective manipulation of the slave robot using the master manipulator. Ideally a kinematic replica of the slave manipulator is used as the master to provide a joint-to-joint control to the slave. This research uses the 7-DOF Whole Arm Manipulator© (WAM) as the master manipulator and a 6-DOF Titan as the slave manipulator. Due to the kinematic dissimilarity between the two, a Cartesian space position mapping technique is adapted in which the slave is made to follow the same trajectory as the end effector of the master with respect to its reference frame. The main criterion in undertaking this mapping approach is to provide a convenient region of operation to the human operator. Various methods like pseudo inverse, Jacobian transpose and Damped least squares have been used to perform the inverse kinematics for the Titan. Joint limit avoidance and obstacle avoidance constraints were used to perform the inverse kinematics for the WAM and thereby remove the redundancy. Finally a joint volume limitation constraint (JVLC) was adopted which aims at providing the operator, a comfortable operational space in union with the master manipulator. Each inverse methodfor the Titan was experimentally tested and the best method identified from thesimulation results and the error analysis. Various experiments were also performed for the constrained inverse kinematics for the WAM and results were simulated. RoboWorks© was used for simulation purposes
    corecore