78,606 research outputs found
A methodical approach to performance measurement experiments : measure and measurement specification
This report describes a methodical approach to performance measurement experiments. This approach gives a blueprint for the whole trajectory from the notion of performance measures and how to define them via planning, instrumentation and execution of the experiments to interpretation of the results. The first stage of the approach, Measurement Initialisation, has been worked out completely. It is shown that a well-defined system description allows a procedural approach to defining performance measures and to identifying parameters that might affect it. For the second stage of the approach, Measurement Planning, concepts are defined that enable a clear experiment description or specification. It is highlighted what actually is being measured when executing an experiment. A brief example that illustrates the value of the method and a comparison with an existing method - that of Jain - complete this report
Influence of Task Combination on EEG Spectrum Modulation for Driver Workload Estimation
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Objective: This study investigates the feasibility of using a method based on electroencephalography (EEG) for deriving a driver’s mental workload index.
Background: The psychophysiological signals provide sensitive information for human functional states assessment in both laboratory and real-world settings and for building a new communication channel between driver and vehicle that allows for driver workload monitoring.
Methods: An experiment combining a lane-change task and n-back task was conducted. The task load levels were manipulated in two dimensions, driving task load and working memory load, with each containing three task load conditions.
Results: The frontal theta activity showed significant increases in the working memory load dimension, but differences were not found with the driving task load dimension. However, significant decreases in parietal alpha activity were found when the task load was increased in both dimensions. Task-related differences were also found. The driving task load contributed more to the changes in alpha power, whereas the working memory load contributed more to the changes in theta power. Additionally, these two task load dimensions caused significant interactive effects on both theta and alpha power.
Conclusion: These results indicate that EEG technology can provide sensitive information for driver workload detection even if the sensitivities of different EEG parameters tend to be task dependent.
Application: One potential future application of this study is to establish a general driver workload estimator that uses EEG signals
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 359)
This bibliography lists 164 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1992. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance
Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?
Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances
Framework for Electroencephalography-based Evaluation of User Experience
Measuring brain activity with electroencephalography (EEG) is mature enough
to assess mental states. Combined with existing methods, such tool can be used
to strengthen the understanding of user experience. We contribute a set of
methods to estimate continuously the user's mental workload, attention and
recognition of interaction errors during different interaction tasks. We
validate these measures on a controlled virtual environment and show how they
can be used to compare different interaction techniques or devices, by
comparing here a keyboard and a touch-based interface. Thanks to such a
framework, EEG becomes a promising method to improve the overall usability of
complex computer systems.Comment: in ACM. CHI '16 - SIGCHI Conference on Human Factors in Computing
System, May 2016, San Jose, United State
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 320)
This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance
Propagators and Violation Functions for Geometric and Workload Constraints Arising in Airspace Sectorisation
Airspace sectorisation provides a partition of a given airspace into sectors,
subject to geometric constraints and workload constraints, so that some cost
metric is minimised. We make a study of the constraints that arise in airspace
sectorisation. For each constraint, we give an analysis of what algorithms and
properties are required under systematic search and stochastic local search
The effects of morning preconditioning protocols on testosterone, cortisol and afternoon sprint cycling performance [conference presentation]
Opportunities exist for athletes to undertake morning exercise protocols in an attempt to potentate afternoon performance. Four sub elite track sprint cyclists completed a morning cycling (Cyc) or weights-based protocol (WP) prior to an afternoon cycling time trial (500m) in a repeated measures, counterbalance crossover design. Measured variables included heart rate, blood lactate, cycling peak power, salivary testosterone (T) and cortisol levels along with time trial performance. Standardised differences in means via magnitude-based inferences were calculated using paired samples T-tests in SPSS version 24 with statistical significance set at p < 0.05. The WP produced significantly faster times in the final 250m in comparison to CycP. The anticipated circadian decline of T was observed after the CycP but was however mitigated following the WP. While slight decreases in 500m times were experienced during the WP, they were not significant and were considered within the normal variations experienced between performances by elite athletes. The effect of the WP on the circadian rhythm of T could be linked to a greater recruitment of muscle fibres. Results suggest a morning resistance protocol can positively affect testosterone levels for afternoon performance. Possible gender and individual responses from conducting a W over Cyc protocol were observed and require further investigation
BTI aware thermal management for reliable DVFS designs
In this paper, we show that dynamic voltage and frequency scaling (DVFS) designs, together with stress-induced BTI variability, exhibit high temperature-induced BTI variability, depending on their workload and operating modes. We show that the impact of temperature-induced variability on circuit lifetime can be higher than that due to stress and exceed 50% over the value estimated considering the circuit average temperature. In order to account for these variabilities in lifetime estimation at design time, we propose a simulation framework for the BTI degradation analysis of DVFS designs accounting for workload and actual temperature profiles. A profile is generated considering statistically probable workload and thermal management constraints by means of the HotSpot tool. Using the proposed framework we explore the expected lifetime of the ethernet circuit from the IWLS05 benchmark suite, synthesized with a 32nm CMOS technology library, for various thermal management constraints. We show that margin-based design can underestimate or overestimate lifetime of DVFS designs by up to 67.8% and 61.9%, respectively. Therefore, the proposed framework allows designers to select appropriately the dynamic thermal management constraints in order to tradeoff long-term reliability (lifetime) and performance with upto 35.8% and 26.3% higher accuracy, respectively, against a temperature-variability unaware BTI analysis
- …
