1,136 research outputs found

    Hands-on haptics: exploring non-visual visualization using the sense of touch

    Get PDF
    No abstract available

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Towards transparent telepresence

    Get PDF
    It is proposed that the concept of transparent telepresence can be closely approached through high fidelity technological mediation. It is argued that the matching of the system capabilities to those of the human user will yield a strong sense of immersion and presence at a remote site. Some applications of such a system are noted. The concept is explained and critical system elements are described together with an overview of some of the necessary system specifications

    Haptics in Robot-Assisted Surgery: Challenges and Benefits

    Get PDF
    Robotic surgery is transforming the current surgical practice, not only by improving the conventional surgical methods but also by introducing innovative robot-enhanced approaches that broaden the capabilities of clinicians. Being mainly of man-machine collaborative type, surgical robots are seen as media that transfer pre- and intra-operative information to the operator and reproduce his/her motion, with appropriate filtering, scaling, or limitation, to physically interact with the patient. The field, however, is far from maturity and, more critically, is still a subject of controversy in medical communities. Limited or absent haptic feedback is reputed to be among reasons that impede further spread of surgical robots. In this paper objectives and challenges of deploying haptic technologies in surgical robotics is discussed and a systematic review is performed on works that have studied the effects of providing haptic information to the users in major branches of robotic surgery. It has been tried to encompass both classical works and the state of the art approaches, aiming at delivering a comprehensive and balanced survey both for researchers starting their work in this field and for the experts

    Integration of advanced teleoperation technologies for control of space robots

    Get PDF
    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful

    Cutaneous Force Feedback as a Sensory Subtraction Technique in Haptics

    Full text link
    A novel sensory substitution technique is presented. Kinesthetic and cutaneous force feedback are substituted by cutaneous feedback (CF) only, provided by two wearable devices able to apply forces to the index finger and the thumb, while holding a handle during a teleoperation task. The force pattern, fed back to the user while using the cutaneous devices, is similar, in terms of intensity and area of application, to the cutaneous force pattern applied to the finger pad while interacting with a haptic device providing both cutaneous and kinesthetic force feedback. The pattern generated using the cutaneous devices can be thought as a subtraction between the complete haptic feedback (HF) and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction instead of sensory substitution. A needle insertion scenario is considered to validate the approach. The haptic device is connected to a virtual environment simulating a needle insertion task. Experiments show that the perception of inserting a needle using the cutaneous-only force feedback is nearly indistinguishable from the one felt by the user while using both cutaneous and kinesthetic feedback. As most of the sensory substitution approaches, the proposed sensory subtraction technique also has the advantage of not suffering from stability issues of teleoperation systems due, for instance, to communication delays. Moreover, experiments show that the sensory subtraction technique outperforms sensory substitution with more conventional visual feedback (VF)

    Perspectives on the Evolution of Tactile, Haptic, and Thermal Displays

    Get PDF

    Brain Functional Connectivity under Teleoperation Latency: a fNIRS Study

    Full text link
    Objective: This study aims to understand the cognitive impact of latency in teleoperation and the related mitigation methods, using functional Near-Infrared Spectroscopy (fNIRS) to analyze functional connectivity. Background: Latency between command, execution, and feedback in teleoperation can impair performance and affect operators mental state. The neural underpinnings of these effects are not well understood. Method: A human subject experiment (n = 41) of a simulated remote robot manipulation task was performed. Three conditions were tested: no latency, with visual and haptic latency, with visual latency and no haptic latency. fNIRS and performance data were recorded and analyzed. Results: The presence of latency in teleoperation significantly increased functional connectivity within and between prefrontal and motor cortexes. Maintaining visual latency while providing real-time haptic feedback reduced the average functional connectivity in all cortical networks and showed a significantly different connectivity ratio within prefrontal and motor cortical networks. The performance results showed the worst performance in the all-delayed condition and best performance in no latency condition, which echoes the neural activity patterns. Conclusion: The study provides neurological evidence that latency in teleoperation increases cognitive load, anxiety, and challenges in motion planning and control. Real-time haptic feedback, however, positively influences neural pathways related to cognition, decision-making, and sensorimotor processes. Application: This research can inform the design of ergonomic teleoperation systems that mitigate the effects of latency.Comment: Submitted to Human Factor
    • …
    corecore