878,089 research outputs found

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    A strategic study of energy efficient and hybrid energy system options for a multi-family building in Korea

    Get PDF
    This study is to identify performance of energy efficiency measures and to match low-carbon and renewable energy (RE) systems supplies to demands in the context of multi-family residential buildings in Korea. An approach to the evaluation of the hybrid energy systems was investigated, including consideration of heat and power demand profiles, energy system combinations, building design options and strategies for matching supply to demand. The approach is encapsulated within an integrated software environment. Building energy simulation technology was exploited to make virtual energy use data. Low-carbon and RE system modelling techniques were used to predict energy supply profiles. A series of demand/supply matching-based analyses were made to identify the effect of energy efficient demand measures (e.g. roof-top gardens, innovative underfloor heating system) and evaluate the capacity utilisation factor from the hybrid energy systems. On the basis of performance information obtained at the conceptual design stage, the design team can pinpoint the most energy efficient demand/supply combination, and consequently, maximise the impact of hybrid energy systems adoption

    Development of test methodology for dynamic mechanical analysis instrumentation

    Get PDF
    Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic

    The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)

    Get PDF
    The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    ERASMUS: Efficient Remote Attestation via Self- Measurement for Unattended Settings

    Full text link
    Remote attestation (RA) is a popular means of detecting malware in embedded and IoT devices. RA is usually realized as an interactive protocol, whereby a trusted party -- verifier -- measures integrity of a potentially compromised remote device -- prover. Early work focused on purely software-based and fully hardware-based techniques, neither of which is ideal for low-end devices. More recent results have yielded hybrid (SW/HW) security architectures comprised of a minimal set of features to support efficient and secure RA on low-end devices. All prior RA techniques require on-demand operation, i.e, RA is performed in real time. We identify some drawbacks of this general approach in the context of unattended devices: First, it fails to detect mobile malware that enters and leaves the prover between successive RA instances. Second, it requires the prover to engage in a potentially expensive (in terms of time and energy) computation, which can be harmful for critical or real-time devices. To address these drawbacks, we introduce the concept of self-measurement where a prover device periodically (and securely) measures and records its own software state, based on a pre-established schedule. A possibly untrusted verifier occasionally collects and verifies these measurements. We present the design of a concrete technique called ERASMUS : Efficient Remote Attestation via Self-Measurement for Unattended Settings, justify its features and evaluate its performance. In the process, we also define a new metric -- Quality of Attestation (QoA). We argue that ERASMUS is well-suited for time-sensitive and/or safety-critical applications that are not served well by on-demand RA. Finally, we show that ERASMUS is a promising stepping stone towards handling attestation of multiple devices (i.e., a group or swarm) with high mobility

    Generation of Warm Dense Plasma on Solar Panel Infrastructure in Exo-Atmospheric Conditions

    Get PDF
    The use of a weaponized thermo-nuclear device in exo-atmospheric conditions would be of great impact on the material integrity of orbiting satellite infrastructure. Particular damage would occur to the multi-layered, solar cell components of such satellites. The rapid absorption of X-ray radiation originating from a nuclear blast into these layers occurs over a picosecond time scale and leads to the generation of Warm Dense Plasma (WDP). While incredibly difficult and costly to replicate in a laboratory setting, a collection of computational techniques and software libraries may be utilized to simulate the intricate atomic and subatomic physics characteristics of such an event. Use of the Monte Carlo sampling method within the Geant4 software library allows for the energy deposition and power density profiles by X-rays into this system to be determined. By understanding and modeling the different factors which can affect the absorption of thermonuclear X-ray radiation, specifically, “cold –X-ray radiation,” in the energy range of approximately 1 to 1.5 keV, the molecular dynamics modeling of WDP generation and evolution can be performed using the LAMMPS code library. One aspect modeled and utilized within this software is the Planck blackbody spectrum of X-rays, assumed to be emitted by the detonation. Another such factor explored is the effect of primary and secondary particle backscattering within the active solar cell layer. Ultimately, it was determined that the primary and secondary particle backscattering of photons and electrons occurs at such a relatively low rate that its effect on the properties of the generated WDP is negligible. Once the energy deposition and power density profiles are determined, LAMMPS is utilized in order to understand the spatio-temporal evolution of the WDP as well as the temperature, stress, and mass density distribution within the material, at its surface, and its immediate vacuum surroundings
    corecore