1,128 research outputs found

    Multilevel MDA-Lite Paris Traceroute

    Full text link
    Since its introduction in 2006-2007, Paris Traceroute and its Multipath Detection Algorithm (MDA) have been used to conduct well over a billion IP level multipath route traces from platforms such as M-Lab. Unfortunately, the MDA requires a large number of packets in order to trace an entire topology of load balanced paths between a source and a destination, which makes it undesirable for platforms that otherwise deploy Paris Traceroute, such as RIPE Atlas. In this paper we present a major update to the Paris Traceroute tool. Our contributions are: (1) MDA-Lite, an alternative to the MDA that significantly cuts overhead while maintaining a low failure probability; (2) Fakeroute, a simulator that enables validation of a multipath route tracing tool's adherence to its claimed failure probability bounds; (3) multilevel multipath route tracing, with, for the first time, a Traceroute tool that provides a router-level view of multipath routes; and (4) surveys at both the IP and router levels of multipath routing in the Internet, showing, among other things, that load balancing topologies have increased in size well beyond what has been previously reported as recently as 2016. The data and the software underlying these results are publicly available.Comment: Preprint. To appear in Proc. ACM Internet Measurement Conference 201

    Network-provider-independent overlays for resilience and quality of service.

    Get PDF
    PhDOverlay networks are viewed as one of the solutions addressing the inefficiency and slow evolution of the Internet and have been the subject of significant research. Most existing overlays providing resilience and/or Quality of Service (QoS) need cooperation among different network providers, but an inter-trust issue arises and cannot be easily solved. In this thesis, we mainly focus on network-provider-independent overlays and investigate their performance in providing two different types of service. Specifically, this thesis addresses the following problems: Provider-independent overlay architecture: A provider-independent overlay framework named Resilient Overlay for Mission-Critical Applications (ROMCA) is proposed. We elaborate its structure including component composition and functions and also provide several operational examples. Overlay topology construction for providing resilience service: We investigate the topology design problem of provider-independent overlays aiming to provide resilience service. To be more specific, based on the ROMCA framework, we formulate this problem mathematically and prove its NP-hardness. Three heuristics are proposed and extensive simulations are carried out to verify their effectiveness. Application mapping with resilience and QoS guarantees: Assuming application mapping is the targeted service for ROMCA, we formulate this problem as an Integer Linear Program (ILP). Moreover, a simple but effective heuristic is proposed to address this issue in a time-efficient manner. Simulations with both synthetic and real networks prove the superiority of both solutions over existing ones. Substrate topology information availability and the impact of its accuracy on overlay performance: Based on our survey that summarizes the methodologies available for inferring the selective substrate topology formed among a group of nodes through active probing, we find that such information is usually inaccurate and additional mechanisms are needed to secure a better inferred topology. Therefore, we examine the impact of inferred substrate topology accuracy on overlay performance given only inferred substrate topology information

    Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    Get PDF
    Graph theory models the Internet mathematically, and a number of plausible mathematically intersecting network models for the Internet have been developed and studied. Simultaneously, Internet researchers have developed methodology to use real data to validate, or invalidate, proposed Internet models. The authors look at these parallel developments, particularly as they apply to scale-free network models of the preferential attachment type

    A Graph Theoretic Perspective on Internet Topology Mapping

    Get PDF
    Understanding the topological characteristics of the Internet is an important research issue as the Internet grows with no central authority. Internet topology mapping studies help better understand the structure and dynamics of the Internet backbone. Knowing the underlying topology, researchers can better develop new protocols and services or fine-tune existing ones. Subnet-level Internet topology measurement studies involve three stages: topology collection, topology construction, and topology analysis. Each of these stages contains challenging tasks, especially when large-scale backbone topologies of millions of nodes are studied. In this dissertation, I first discuss issues in subnet-level Internet topology mapping and review state-of-the-art approaches to handle them. I propose a novel graph data indexing approach to to efficiently process large scale topology data. I then conduct an experimental study to understand how the responsiveness of routers has changed over the last decade and how it differs based on the probing mechanism. I then propose an efficient unresponsive resolution approach by incorporating our structural graph indexing technique. Finally, I introduce Cheleby, an integrated Internet topology mapping system. Cheleby first dynamically probes observed subnetworks using a team of PlanetLab nodes around the world to obtain comprehensive backbone topologies. Then, it utilizes efficient algorithms to resolve subnets, IP aliases, and unresponsive routers in the collected data sets to construct comprehensive subnet-level topologies. Sample topologies are provided at http://cheleby.cse.unr.edu

    Speedtrap: Internet-Scale IPv6 Alias Resolution

    Get PDF
    Proceedings of the Thirteenth ACM SIGCOMM Internet Measurement (IMC 2013) Conference, Barcelona, ES, October 2013.The article of record as published may be located at http://dx.doi.org/10.1145/2504730.2504759.Impediments to resolving IPv6 router aliases have precluded understanding the emerging router-level IPv6 Internet topology. In this work, we design, implement, and validate the first {\em Internet-scale alias resolution technique} for IPv6. Our technique, \st, leverages the ability to induce fragmented IPv6 responses from router interfaces in a particular temporal pattern that produces distinguishing per-router fingerprints. Our algorithm surmounts three fundamental challenges to Internet-scale IPv6 alias resolution using fragment identifier values: (1) unlike for IPv4, the identifier counters on IPv6 routers have no natural velocity, (2) the values of these counters are similar across routers, and (3) the packet size required to collect inferences is 46 times larger than required in IPv4. We demonstrate the efficacy of the technique by producing router-level Internet IPv6 topologies using measurements from CAIDA's distributed infrastructure. Our preliminary work represents a step toward understanding the Internet's IPv6 router-level topology, an important objective with respect to IPv6 network resilience, security, policy, and longitudinal evolution
    corecore