11,353 research outputs found

    Business Process Innovation using the Process Innovation Laboratory

    Get PDF
    Most organizations today are required not only to establish effective business processes but they are required to accommodate for changing business conditions at an increasing rate. Many business processes extend beyond the boundary of the enterprise into the supply chain and the information infrastructure therefore is critical. Today nearly every business relies on their Enterprise System (ES) for process integration and the future generations of enterprise systems will increasingly be driven by business process models. Consequently process modeling and improvement will become vital for business process innovation (BPI) in future organizations. There is a significant body of knowledge on various aspect of process innovation, e.g. on conceptual modeling, business processes, supply chains and enterprise systems. Still an overall comprehensive and consistent theoretical framework with guidelines for practical applications has not been identified. The aim of this paper is to establish a conceptual framework for business process innovation in the supply chain based on advanced enterprise systems. The main approach to business process innovation in this context is to create a new methodology for exploring process models and patterns of applications. The paper thus presents a new concept for business process innovation called the process innovation laboratory a.k.a. the Ð-Lab. The Ð-Lab is a comprehensive framework for BPI using advanced enterprise systems. The Ð-Lab is a collaborative workspace for experimenting with process models and an explorative approach to study integrated modeling in a controlled environment. The Ð-Lab facilitates innovation by using an integrated action learning approach to process modeling including contemporary technological, organizational and business perspectivesNo; keywords

    A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities

    Get PDF
    Examines the state of the foundation's efforts to improve educational opportunities worldwide through universal access to and use of high-quality academic content

    Innovation in Mobile Learning: A European Perspective

    Get PDF
    In the evolving landscape of mobile learning, European researchers have conducted significant mobile learning projects, representing a distinct perspective on mobile learning research and development. Our paper aims to explore how these projects have arisen, showing the driving forces of European innovation in mobile learning. We propose context as a central construct in mobile learning and examine theories of learning for the mobile world, based on physical, technological, conceptual, social and temporal mobility. We also examine the impacts of mobile learning research on educational practices and the implications for policy. Throughout, we identify lessons learnt from European experiences to date

    A portal of educational resources: providing evidence for matching pedagogy with technology

    Get PDF
    The TPACK (Technology, Pedagogy and Content Knowledge) model presents the three types of knowledge that are necessary to implement a successful technology-based educational activity. It highlights how the intersections between TPK (Technological Pedagogical Knowledge), PCK (Pedagogical Content Knowledge) and TCK (Technological Content Knowledge) are not a sheer sum up of their components but new types of knowledge. This paper focuses on TPK, the intersection between technology knowledge and pedagogy knowledge – a crucial field of investigation. Actually, technology in education is not just an add-on but is literally reshaping teaching/learning paradigms. Technology modifies pedagogy and pedagogy dictates requirements to technology. In order to pursue this research, an empirical approach was taken, building a repository (back-end) and a portal (front-end) of about 300 real-life educational experiences run at school. Educational portals are not new, but they generally emphasise content. Instead, in our portal, technology and pedagogy take centre stage. Experiences are classified according to more than 30 categories (‘facets’) and more than 200 facet values, all revolving around the pedagogical implementation and the technology used. The portal (an innovative piece of technology) supports sophisticated ‘exploratory’ sessions of use, targeted at researchers (investigating the TPK intersection), teachers (looking for inspiration in their daily jobs) and decision makers (making decisions about the introduction of technology into schools)

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Transition UGent: a bottom-up initiative towards a more sustainable university

    Get PDF
    The vibrant think-tank ‘Transition UGent’ engaged over 250 academics, students and people from the university management in suggesting objectives and actions for the Sustainability Policy of Ghent University (Belgium). Founded in 2012, this bottom-up initiative succeeded to place sustainability high on the policy agenda of our university. Through discussions within 9 working groups and using the transition management method, Transition UGent developed system analyses, sustainability visions and transition paths on 9 fields of Ghent University: mobility, energy, food, waste, nature and green, water, art, education and research. At the moment, many visions and ideas find their way into concrete actions and policies. In our presentation we focused on the broad participative process, on the most remarkable structural results (e.g. a formal and ambitious Sustainability Vision and a student-led Sustainability Office) and on recent actions and experiments (e.g. a sustainability assessment on food supply in student restaurants, artistic COP21 activities, ambitious mobility plans, food leftovers projects, an education network on sustainability controversies, a transdisciplinary platform on Sustainable Cities). We concluded with some recommendations and reflections on this transition approach, on the important role of ‘policy entrepreneurs’ and student involvement, on lock-ins and bottlenecks, and on convincing skeptical leaders
    • …
    corecore