9 research outputs found

    Black-box Generalization of Machine Teaching

    Full text link
    Hypothesis-pruning maximizes the hypothesis updates for active learning to find those desired unlabeled data. An inherent assumption is that this learning manner can derive those updates into the optimal hypothesis. However, its convergence may not be guaranteed well if those incremental updates are negative and disordered. In this paper, we introduce a black-box teaching hypothesis hTh^\mathcal{T} employing a tighter slack term (1+FT(h^t))Δt\left(1+\mathcal{F}^{\mathcal{T}}(\widehat{h}_t)\right)\Delta_t to replace the typical 2Δt2\Delta_t for pruning. Theoretically, we prove that, under the guidance of this teaching hypothesis, the learner can converge into a tighter generalization error and label complexity bound than those non-educated learners who do not receive any guidance from a teacher:1) the generalization error upper bound can be reduced from R(h)+4ΔT1R(h^*)+4\Delta_{T-1} to approximately R(hT)+2ΔT1R(h^{\mathcal{T}})+2\Delta_{T-1}, and 2) the label complexity upper bound can be decreased from 4θ(TR(h)+2O(T))4 \theta\left(TR(h^{*})+2O(\sqrt{T})\right) to approximately 2θ(2TR(hT)+3O(T))2\theta\left(2TR(h^{\mathcal{T}})+3 O(\sqrt{T})\right). To be strict with our assumption, self-improvement of teaching is firstly proposed when hTh^\mathcal{T} loosely approximates hh^*. Against learning, we further consider two teaching scenarios: teaching a white-box and black-box learner. Experiments verify this idea and show better generalization performance than the fundamental active learning strategies, such as IWAL, IWAL-D, etc

    Integrating Iterative Machine Teaching and Active Learning into the Machine Learning Loop

    Get PDF
    [Abstract] Scholars and practitioners are defining new types of interactions between humans and machine learning algorithms that we can group under the umbrella term of Human-in-the-Loop Machine Learning (HITL-ML). This paper is focused on implementing two approaches to this topic—Iterative Machine Teaching (iMT) and Active Learning (AL)—and analyzing how to integrate them in the learning loop. iMT is a variation of Machine Teaching in which a machine acts as a teacher that tries to transfer knowledge to a machine learning model. The focus of the problem in iMT is how to obtain the optimal training set given a machine learning algorithm and a target model. The idea is to learn a target concept with a minimal number of iterations with the smallest dataset. Active Learning, in contrast, is a specialized type of supervised learning in which humans are incorporated in the loop to act as oracles that analyze unlabeled data. AL allows us to achieve greater accuracy with less data and less training. Our proposal to incorporate iMT and AL into the machine learning loop is to use iMT as a technique to obtain the “Minimum Viable Data (MVD)” for training a learning model, that is, a dataset that allows us to increase speed and reduce complexity in the learning process by allowing to build early prototypes. Next, we will use AL to refine this first prototype by adding new data in an iterative and incremental way. We carried out several experiments to test the feasibility of our proposed approach. They show that the algorithms trained with the teachers converge faster than those that have been trained in a conventional way. Also, AL helps the model to avoid getting stuck and to keep improving after the first few iterations. The two approaches investigated in this paper can be considered complementary, as they correspond to different stages in the learning process.This work has been supported by the State Research Agency of the Spanish Government (grant PID2019-107194GB-I00 / AEI / 10.13039/501100011033) and by the Xunta de Galicia (grant ED431C 2018/34) with the European Union ERDF funds. We wish to acknowledge the support received from the Centro de Investigaci ́on de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional Development Fund- Galicia 2014-2020 Program, grant ED431G 2019/01)Xunta de Galicia; ED431C 2018/34Xunta de Galicia; ED431G 2019/0

    One-shot Machine Teaching: Cost Very Few Examples to Converge Faster

    Full text link
    Artificial intelligence is to teach machines to take actions like humans. To achieve intelligent teaching, the machine learning community becomes to think about a promising topic named machine teaching where the teacher is to design the optimal (usually minimal) teaching set given a target model and a specific learner. However, previous works usually require numerous teaching examples along with large iterations to guide learners to converge, which is costly. In this paper, we consider a more intelligent teaching paradigm named one-shot machine teaching which costs fewer examples to converge faster. Different from typical teaching, this advanced paradigm establishes a tractable mapping from the teaching set to the model parameter. Theoretically, we prove that this mapping is surjective, which serves to an existence guarantee of the optimal teaching set. Then, relying on the surjective mapping from the teaching set to the parameter, we develop a design strategy of the optimal teaching set under appropriate settings, of which two popular efficiency metrics, teaching dimension and iterative teaching dimension are one. Extensive experiments verify the efficiency of our strategy and further demonstrate the intelligence of this new teaching paradigm

    Self-Refine: Iterative Refinement with Self-Feedback

    Full text link
    Like people, LLMs do not always generate the best text for a given generation problem on their first try (e.g., summaries, answers, explanations). Just as people then refine their text, we introduce SELF-REFINE, a framework for similarly improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an output using an LLM, then allow the same model to provide multi-aspect feedback for its own output; finally, the same model refines its previously generated output given its own feedback. Unlike earlier work, our iterative refinement framework does not require supervised training data or reinforcement learning, and works with a single LLM. We experiment with 7 diverse tasks, ranging from review rewriting to math reasoning, demonstrating that our approach outperforms direct generation. In all tasks, outputs generated with SELF-REFINE are preferred by humans and by automated metrics over those generated directly with GPT-3.5 and GPT-4, improving on average by absolute 20% across tasks.Comment: Code, data, and demo at https://selfrefine.info

    CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing

    Full text link
    Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.Comment: ICLR 202
    corecore