55,887 research outputs found

    A GRID-BASED E-LEARNING MODEL FOR OPEN UNIVERSITIES

    Get PDF
    E-learning has grown to become a widely accepted method of learning all over the world. As a result, many e-learning platforms which have been developed based on varying technologies were faced with some limitations ranging from storage capability, computing power, to availability or access to the learning support infrastructures. This has brought about the need to develop ways to effectively manage and share the limited resources available in the e-learning platform. Grid computing technology has the capability to enhance the quality of pedagogy on the e-learning platform. In this paper we propose a Grid-based e-learning model for Open Universities. An attribute of such universities is the setting up of multiple remotely located campuses within a country. The grid-based e-learning model presented in this work possesses the attributes of an elegant architectural framework that will facilitate efficient use of available e-learning resources and cost reduction, leading to general improvement of the overall quality of the operations of open universities

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    E-Science in the classroom - Towards viability

    Get PDF
    E-Science has the potential to transform school science by enabling learners, teachers and research scientists to engage together in authentic scientific enquiry, collaboration and learning. However, if we are to reap the benefits of this potential as part of everyday teaching and learning, we need to explicitly think about and support the work required to set up and run e-Science experiences within any particular educational context. In this paper, we present a framework for identifying and describing the resources, tools and services necessary to move e-Science into the classroom together with examples of these. This framework is derived from previous experiences conducting educational e-Science projects and systematic analysis of the categories of ‘hidden work’ needed to run these projects (Smith, Underwood, Fitzpatrick, & Luckin, forthcoming). The articulation of resources, tools and services based on these categories provides a starting point for more methodical design and deployment of future educational e- Science projects, reflection on which can also help further develop the framework. It also points to the technological infrastructure from which such tools and services could be built. As such it provides an agenda of work to develop both processes and technologies that would make it practical for teachers to deliver active, and collaborative e-Science learning experiences on a larger scale within and across schools. Routine school e- Science will only be possible if such support is specified, implemented and made available to teachers within their work contexts in an appropriate and usable form

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    System Requirements Analysis for e-learning systems using grid

    Get PDF
    Until recent years network-based education and grid technologies were two distinct areas. But e-learning systems have been increasingly addressing learning resources sharing (text, images, video, on-line data, etc.) and reuse, interoperability and other more different modes of interactions. E-learning systems consist of complex activities and most of them have been designed based on client-server or peer to peer, and recently web services architecture. These systems have major drawback because of their limitations in scalability, availability, distribution of computing power and storage systems, as well as sharing information between users that contribute to these systems. In this context the use of grid technology reveals its utility and availability, as scalable, flexible coordinated and secure resource sharing among geographically distributed individuals or institutions, in the perspective of e-learning.networked-based, education, grid technologies, e-learning systems,resouce sharing, interoperability, standardisation.

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    The Knowledge Life Cycle for e-learning

    No full text
    In this paper, we examine the semantic aspects of e-learning from both pedagogical and technological points of view. We suggest that if semantics are to fulfil their potential in the learning domain then a paradigm shift in perspective is necessary, from information-based content delivery to knowledge-based collaborative learning services. We propose a semantics driven Knowledge Life Cycle that characterises the key phases in managing semantics and knowledge, show how this can be applied to the learning domain and demonstrate the value of semantics via an example of knowledge reuse in learning assessment management
    corecore