76,636 research outputs found

    Reproducibility as a Mechanism for Teaching Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence

    Get PDF
    In this work, we explain the setup for a technical, graduate-level course on Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence (FACT-AI) at the University of Amsterdam, which teaches FACT-AI concepts through the lens of reproducibility. The focal point of the course is a group project based on reproducing existing FACT-AI algorithms from top AI conferences and writing a corresponding report. In the first iteration of the course, we created an open source repository with the code implementations from the group projects. In the second iteration, we encouraged students to submit their group projects to the Machine Learning Reproducibility Challenge, resulting in 9 reports from our course being accepted for publication in the ReScience journal. We reflect on our experience teaching the course over two years, where one year coincided with a global pandemic, and propose guidelines for teaching FACT-AI through reproducibility in graduate-level AI study programs. We hope this can be a useful resource for instructors who want to set up similar courses in the future

    EMPOWERING EDUCATION THROUGH AI: POTENTIAL BENEFITS AND FUTURE IMPLICATIONS FOR INSTRUCTIONAL PEDAGOGY

    Get PDF
    This study explores the transformative potential of Artificial Intelligence (AI) in education. AI-powered systems offer a paradigm shift from traditional methods, fostering personalized learning experiences. The paper examines various AI applications including intelligent tutoring systems, virtual reality environments, and advanced data analysis. Machine learning algorithms personalize learning journeys by analyzing student data and preferences. Learner models track progress and adapt instruction based on strengths and weaknesses. The research identifies potential benefits such as improved access to education, enhanced student engagement, and streamlined administrative tasks. Additionally, the paper explores the future implications of AI in education, including adaptive assessments, virtual teaching assistants, and increased parental involvement. Recommendations for further research emphasize exploring AI's role in instructional pedagogy, integrating AI concepts into the curriculum, and providing hands-on learning opportunities through AI projects. Overall, the study highlights AI's potential to revolutionize education by creating a more individualized and effective learning environment for all students

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering

    Enhancing Undergraduate AI Courses through Machine Learning Projects

    Full text link
    It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects – Web User Profiling which we have used in our AI class

    AI Education Matters: Teaching Hidden Markov Models

    Full text link
    In this column, we share resources for learning about and teaching Hidden Markov Models (HMMs). HMMs find many important applications in temporal pattern recognition tasks such as speech/handwriting/gesture recognition and robot localization. In such domains, we may have a finite state machine model with known state transition probabilities, state output probabilities, and state outputs, but lack knowledge of the states generating such outputs. HMMs are useful in framing problems where external sequential evidence is used to derive underlying state information (e.g. intended words and gestures). [excerpt

    Pedagogical Possibilities for the N-Puzzle Problem

    Full text link
    In this paper we present work on a project funded by the National Science Foundation with a goal of unifying the Artificial Intelligence (AI) course around the theme of machine learning. Our work involves the development and testing of an adaptable framework for the presentation of core AI topics that emphasizes the relationship between AI and computer science. Several hands-on laboratory projects that can be closely integrated into an introductory AI course have been developed. We present an overview of one of the projects and describe the associated curricular materials that have been developed. The project uses machine learning as a theme to unify core AI topics in the context of the N-puzzle game. Games provide a rich framework to introduce students to search fundamentals and other core AI concepts. The paper presents several pedagogical possibilities for the N-puzzle game, the rich challenge it offers, and summarizes our experiences using it

    Connecting Undergraduate Students as Partners in Computer Science Teaching and Research

    Get PDF
    Connecting undergraduate students as partners can lead to the enhancement of the undergraduate experience and allow students to see the different sides of the university. Such holistic perspectives may better inform academic career choices and postgraduate study. Furthermore, student involvement in course development has many potential benefits. This paper outlines a framework for connecting research and teaching within Computer Science- though this is applicable across other disciplines. Three case studies are considered to illustrate the approach. The first case study involves students in their honours’ stage (level 6, typically 3rd year) project, the second an undergraduate intern between stages 5 and 6, and finally, a MSc (level 7) project. All three case studies have actively involved students in core parts of the University’s teaching and research activities, producing usable software systems to support these efforts. We consider this as a continuing engagement process to enhance the undergraduate learning experience within Computer Science
    • …
    corecore