59 research outputs found

    Low Resolution Face Recognition Using Mixture of Experts

    Get PDF
    Abstract-Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 Ă— 48 ORL images to 12 Ă— 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Discriminative, generative, and imitative learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 201-212).I propose a common framework that combines three different paradigms in machine learning: generative, discriminative and imitative learning. A generative probabilistic distribution is a principled way to model many machine learning and machine perception problems. Therein, one provides domain specific knowledge in terms of structure and parameter priors over the joint space of variables. Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this knowledge and subsequently refining it with data and observations. The final result is a distribution that is a good generator of novel exemplars. Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing for a specific task, such as classification or prediction. This typically leads to superior performance yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination (MED) as a framework to combine both discriminative estimation and generative probability densities. Calculations involve distributions over parameters, margins, and priors and are provably and uniquely solvable for the exponential family. Extensions include regression, feature selection, and transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature selection, to obtain substantial improvements. To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-Maximization (EM) algorithm for latent discriminative learning (or latent MED).(cont.) While EM and Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds, is computable efficiently and is globally guaranteed. It permits powerful discriminative learning with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures of multinomials and hidden Markov models). We provide empirical results on standardized data sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and reverse-Jensen bounds over state of the art discriminative techniques or generative approaches. Subsequently, imitative learning is presented as another variation on generative modeling which also learns from exemplars from an observed data source. However, the distinction is that the generative model is an agent that is interacting in a much more complex surrounding external world. It is not efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning (under appropriate conditions) can be adequately addressed as a discriminative prediction task which outperforms the usual generative approach. This discriminative-imitative learning approach is applied with a generative perceptual system to synthesize a real-time agent that learns to engage in social interactive behavior.by Tony Jebara.Ph.D

    Kokoonpanotehtävien oppiminen ihmisen havaintoesityksistä

    Get PDF
    This thesis presents a method for learning and reproducing assembly tasks using Learning from Demonstration paradigm and a graph representation of assembly parts and their spatial relations. We show that this graph representation combined with inexact graph matching techniques provide a framework capable of learning assembly tasks, even with uncertain information of assembly operations. In this thesis our method replicated observed assembly tasks, where Lego Quatro bricks were manipulated with pick-and-place operations. We tested our proposed method through a series of experiments. In the experiments, a robot first observed a human teacher demonstrate an assembly task in front of a Kinect sensor. Then, the robot generated a simulation that depicted the learned assembly product. We also introduced uncertainty into the experiments by changing some of the assembly parts, or by not showing the intermediate assembly operations to the robot. In these events, the robot generated a simulated structure that was similar to the observed one. We used inexact graph matching techniques to measure the similarity between assembly structures. In the experiments our method successfully replicated a learned task when the robot was provided with a complete set of assembly parts. Also, the task was repeated relatively well when only one or two assembly parts were replaced with another type of Lego. We conclude that our method provides a convenient platform for a more general assembly method. Also, our method is capable of ``improvising'' in unanticipated situations, where the robot is supplied with imperfect knowledge of the task.Tässä diplomityössä esitämme menetelmän kokoonpanotehtävien oppimiseen ihmisen havaintoesityksistä, käyttäen graafiesitystä kokoonpanossa käytetyistä kappaleista. Osoitamme, että tämä graafiesitys yhdistettynä epätarkkoihin graafinsovitusmenetelmiin mahdollistaa kokoonpanotehtävien oppimisen --- myös silloin, kun kokoonpano-operaatioiden oppimiseen liittyy epävarmuutta. Tässä työssä käytimme menetelmää toistamaan kokoonpanotehtäviä, joissa Lego Quatro -palikoita liitettiin toisiinsa. Testasimme esitettyä menetelmää useilla kokeilla. Kokeissa robotti ensin havaitsi opettajan suorittavan kokoonpanotehtävän Kinect-kameran edessä. Tämän jälkeen robotti toisti opitun tehtävän simulaationa. Lisäsimme myös epävarmuutta kokeisiin vaihtamalla kokoonpanoon tarvittavia kappaleita, tai jättämällä näyttämättä kokoonpanon välivaiheita robotille. Tällöin robotti tuotti simuloidun rakennelman, joka oli mahdollisimman samankaltainen opittuun rakennelmaan nähden. Rakennelmien välistä samankaltaisuutta mitattiin epätarkoista graafinsovitusmenetelmistä tutuilla samankaltaisuusmitoilla. Kokeissa menetelmämme toisti opitut tehtävät onnistuneesti silloin, kun robotille oli annettu sama joukko palikoita kuin mitä havaintoesityksessä oli käytetty. Robotti toisti tehtävät menestyksekkäästi myös silloin, kun vain yksi tai kaksi havaintoesityksessä käytettyä Legoa oli vaihdettu erityyppisiksi. Kokeiden perusteella toteamme, että esittämämme menetelmä luo hyvän pohjan yleisemmälle kokoonpanomenetelmälle. Menetelmämme pystyy myös ''improvisoimaan'' odottamattomissa tilanteissa, joissa robotille näytettyyn havaintoesitykseen liittyy epätäydellistä tietoa

    Journal of Mathematics and Science: Collaborative Explorations

    Get PDF

    Discriminant feature pursuit: from statistical learning to informative learning.

    Get PDF
    Lin Dahua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 233-250).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- The Problem We are Facing --- p.1Chapter 1.2 --- Generative vs. Discriminative Models --- p.2Chapter 1.3 --- Statistical Feature Extraction: Success and Challenge --- p.3Chapter 1.4 --- Overview of Our Works --- p.5Chapter 1.4.1 --- New Linear Discriminant Methods: Generalized LDA Formulation and Performance-Driven Sub space Learning --- p.5Chapter 1.4.2 --- Coupled Learning Models: Coupled Space Learning and Inter Modality Recognition --- p.6Chapter 1.4.3 --- Informative Learning Approaches: Conditional Infomax Learning and Information Chan- nel Model --- p.6Chapter 1.5 --- Organization of the Thesis --- p.8Chapter I --- History and Background --- p.10Chapter 2 --- Statistical Pattern Recognition --- p.11Chapter 2.1 --- Patterns and Classifiers --- p.11Chapter 2.2 --- Bayes Theory --- p.12Chapter 2.3 --- Statistical Modeling --- p.14Chapter 2.3.1 --- Maximum Likelihood Estimation --- p.14Chapter 2.3.2 --- Gaussian Model --- p.15Chapter 2.3.3 --- Expectation-Maximization --- p.17Chapter 2.3.4 --- Finite Mixture Model --- p.18Chapter 2.3.5 --- A Nonparametric Technique: Parzen Windows --- p.21Chapter 3 --- Statistical Learning Theory --- p.24Chapter 3.1 --- Formulation of Learning Model --- p.24Chapter 3.1.1 --- Learning: Functional Estimation Model --- p.24Chapter 3.1.2 --- Representative Learning Problems --- p.25Chapter 3.1.3 --- Empirical Risk Minimization --- p.26Chapter 3.2 --- Consistency and Convergence of Learning --- p.27Chapter 3.2.1 --- Concept of Consistency --- p.27Chapter 3.2.2 --- The Key Theorem of Learning Theory --- p.28Chapter 3.2.3 --- VC Entropy --- p.29Chapter 3.2.4 --- Bounds on Convergence --- p.30Chapter 3.2.5 --- VC Dimension --- p.35Chapter 4 --- History of Statistical Feature Extraction --- p.38Chapter 4.1 --- Linear Feature Extraction --- p.38Chapter 4.1.1 --- Principal Component Analysis (PCA) --- p.38Chapter 4.1.2 --- Linear Discriminant Analysis (LDA) --- p.41Chapter 4.1.3 --- Other Linear Feature Extraction Methods --- p.46Chapter 4.1.4 --- Comparison of Different Methods --- p.48Chapter 4.2 --- Enhanced Models --- p.49Chapter 4.2.1 --- Stochastic Discrimination and Random Subspace --- p.49Chapter 4.2.2 --- Hierarchical Feature Extraction --- p.51Chapter 4.2.3 --- Multilinear Analysis and Tensor-based Representation --- p.52Chapter 4.3 --- Nonlinear Feature Extraction --- p.54Chapter 4.3.1 --- Kernelization --- p.54Chapter 4.3.2 --- Dimension reduction by Manifold Embedding --- p.56Chapter 5 --- Related Works in Feature Extraction --- p.59Chapter 5.1 --- Dimension Reduction --- p.59Chapter 5.1.1 --- Feature Selection --- p.60Chapter 5.1.2 --- Feature Extraction --- p.60Chapter 5.2 --- Kernel Learning --- p.61Chapter 5.2.1 --- Basic Concepts of Kernel --- p.61Chapter 5.2.2 --- The Reproducing Kernel Map --- p.62Chapter 5.2.3 --- The Mercer Kernel Map --- p.64Chapter 5.2.4 --- The Empirical Kernel Map --- p.65Chapter 5.2.5 --- Kernel Trick and Kernelized Feature Extraction --- p.66Chapter 5.3 --- Subspace Analysis --- p.68Chapter 5.3.1 --- Basis and Subspace --- p.68Chapter 5.3.2 --- Orthogonal Projection --- p.69Chapter 5.3.3 --- Orthonormal Basis --- p.70Chapter 5.3.4 --- Subspace Decomposition --- p.70Chapter 5.4 --- Principal Component Analysis --- p.73Chapter 5.4.1 --- PCA Formulation --- p.73Chapter 5.4.2 --- Solution to PCA --- p.75Chapter 5.4.3 --- Energy Structure of PCA --- p.76Chapter 5.4.4 --- Probabilistic Principal Component Analysis --- p.78Chapter 5.4.5 --- Kernel Principal Component Analysis --- p.81Chapter 5.5 --- Independent Component Analysis --- p.83Chapter 5.5.1 --- ICA Formulation --- p.83Chapter 5.5.2 --- Measurement of Statistical Independence --- p.84Chapter 5.6 --- Linear Discriminant Analysis --- p.85Chapter 5.6.1 --- Fisher's Linear Discriminant Analysis --- p.85Chapter 5.6.2 --- Improved Algorithms for Small Sample Size Problem . --- p.89Chapter 5.6.3 --- Kernel Discriminant Analysis --- p.92Chapter II --- Improvement in Linear Discriminant Analysis --- p.100Chapter 6 --- Generalized LDA --- p.101Chapter 6.1 --- Regularized LDA --- p.101Chapter 6.1.1 --- Generalized LDA Implementation Procedure --- p.101Chapter 6.1.2 --- Optimal Nonsingular Approximation --- p.103Chapter 6.1.3 --- Regularized LDA algorithm --- p.104Chapter 6.2 --- A Statistical View: When is LDA optimal? --- p.105Chapter 6.2.1 --- Two-class Gaussian Case --- p.106Chapter 6.2.2 --- Multi-class Cases --- p.107Chapter 6.3 --- Generalized LDA Formulation --- p.108Chapter 6.3.1 --- Mathematical Preparation --- p.108Chapter 6.3.2 --- Generalized Formulation --- p.110Chapter 7 --- Dynamic Feedback Generalized LDA --- p.112Chapter 7.1 --- Basic Principle --- p.112Chapter 7.2 --- Dynamic Feedback Framework --- p.113Chapter 7.2.1 --- Initialization: K-Nearest Construction --- p.113Chapter 7.2.2 --- Dynamic Procedure --- p.115Chapter 7.3 --- Experiments --- p.115Chapter 7.3.1 --- Performance in Training Stage --- p.116Chapter 7.3.2 --- Performance on Testing set --- p.118Chapter 8 --- Performance-Driven Subspace Learning --- p.119Chapter 8.1 --- Motivation and Principle --- p.119Chapter 8.2 --- Performance-Based Criteria --- p.121Chapter 8.2.1 --- The Verification Problem and Generalized Average Margin --- p.122Chapter 8.2.2 --- Performance Driven Criteria based on Generalized Average Margin --- p.123Chapter 8.3 --- Optimal Subspace Pursuit --- p.125Chapter 8.3.1 --- Optimal threshold --- p.125Chapter 8.3.2 --- Optimal projection matrix --- p.125Chapter 8.3.3 --- Overall procedure --- p.129Chapter 8.3.4 --- Discussion of the Algorithm --- p.129Chapter 8.4 --- Optimal Classifier Fusion --- p.130Chapter 8.5 --- Experiments --- p.131Chapter 8.5.1 --- Performance Measurement --- p.131Chapter 8.5.2 --- Experiment Setting --- p.131Chapter 8.5.3 --- Experiment Results --- p.133Chapter 8.5.4 --- Discussion --- p.139Chapter III --- Coupled Learning of Feature Transforms --- p.140Chapter 9 --- Coupled Space Learning --- p.141Chapter 9.1 --- Introduction --- p.142Chapter 9.1.1 --- What is Image Style Transform --- p.142Chapter 9.1.2 --- Overview of our Framework --- p.143Chapter 9.2 --- Coupled Space Learning --- p.143Chapter 9.2.1 --- Framework of Coupled Modelling --- p.143Chapter 9.2.2 --- Correlative Component Analysis --- p.145Chapter 9.2.3 --- Coupled Bidirectional Transform --- p.148Chapter 9.2.4 --- Procedure of Coupled Space Learning --- p.151Chapter 9.3 --- Generalization to Mixture Model --- p.152Chapter 9.3.1 --- Coupled Gaussian Mixture Model --- p.152Chapter 9.3.2 --- Optimization by EM Algorithm --- p.152Chapter 9.4 --- Integrated Framework for Image Style Transform --- p.154Chapter 9.5 --- Experiments --- p.156Chapter 9.5.1 --- Face Super-resolution --- p.156Chapter 9.5.2 --- Portrait Style Transforms --- p.157Chapter 10 --- Inter-Modality Recognition --- p.162Chapter 10.1 --- Introduction to the Inter-Modality Recognition Problem . . . --- p.163Chapter 10.1.1 --- What is Inter-Modality Recognition --- p.163Chapter 10.1.2 --- Overview of Our Feature Extraction Framework . . . . --- p.163Chapter 10.2 --- Common Discriminant Feature Extraction --- p.165Chapter 10.2.1 --- Formulation of the Learning Problem --- p.165Chapter 10.2.2 --- Matrix-Form of the Objective --- p.168Chapter 10.2.3 --- Solving the Linear Transforms --- p.169Chapter 10.3 --- Kernelized Common Discriminant Feature Extraction --- p.170Chapter 10.4 --- Multi-Mode Framework --- p.172Chapter 10.4.1 --- Multi-Mode Formulation --- p.172Chapter 10.4.2 --- Optimization Scheme --- p.174Chapter 10.5 --- Experiments --- p.176Chapter 10.5.1 --- Experiment Settings --- p.176Chapter 10.5.2 --- Experiment Results --- p.177Chapter IV --- A New Perspective: Informative Learning --- p.180Chapter 11 --- Toward Information Theory --- p.181Chapter 11.1 --- Entropy and Mutual Information --- p.181Chapter 11.1.1 --- Entropy --- p.182Chapter 11.1.2 --- Relative Entropy (Kullback Leibler Divergence) --- p.184Chapter 11.2 --- Mutual Information --- p.184Chapter 11.2.1 --- Definition of Mutual Information --- p.184Chapter 11.2.2 --- Chain rules --- p.186Chapter 11.2.3 --- Information in Data Processing --- p.188Chapter 11.3 --- Differential Entropy --- p.189Chapter 11.3.1 --- Differential Entropy of Continuous Random Variable . --- p.189Chapter 11.3.2 --- Mutual Information of Continuous Random Variable . --- p.190Chapter 12 --- Conditional Infomax Learning --- p.191Chapter 12.1 --- An Overview --- p.192Chapter 12.2 --- Conditional Informative Feature Extraction --- p.193Chapter 12.2.1 --- Problem Formulation and Features --- p.193Chapter 12.2.2 --- The Information Maximization Principle --- p.194Chapter 12.2.3 --- The Information Decomposition and the Conditional Objective --- p.195Chapter 12.3 --- The Efficient Optimization --- p.197Chapter 12.3.1 --- Discrete Approximation Based on AEP --- p.197Chapter 12.3.2 --- Analysis of Terms and Their Derivatives --- p.198Chapter 12.3.3 --- Local Active Region Method --- p.200Chapter 12.4 --- Bayesian Feature Fusion with Sparse Prior --- p.201Chapter 12.5 --- The Integrated Framework for Feature Learning --- p.202Chapter 12.6 --- Experiments --- p.203Chapter 12.6.1 --- A Toy Problem --- p.203Chapter 12.6.2 --- Face Recognition --- p.204Chapter 13 --- Channel-based Maximum Effective Information --- p.209Chapter 13.1 --- Motivation and Overview --- p.209Chapter 13.2 --- Maximizing Effective Information --- p.211Chapter 13.2.1 --- Relation between Mutual Information and Classification --- p.211Chapter 13.2.2 --- Linear Projection and Metric --- p.212Chapter 13.2.3 --- Channel Model and Effective Information --- p.213Chapter 13.2.4 --- Parzen Window Approximation --- p.216Chapter 13.3 --- Parameter Optimization on Grassmann Manifold --- p.217Chapter 13.3.1 --- Grassmann Manifold --- p.217Chapter 13.3.2 --- Conjugate Gradient Optimization on Grassmann Manifold --- p.219Chapter 13.3.3 --- Computation of Gradient --- p.221Chapter 13.4 --- Experiments --- p.222Chapter 13.4.1 --- A Toy Problem --- p.222Chapter 13.4.2 --- Face Recognition --- p.223Chapter 14 --- Conclusion --- p.23

    Morris Catalog 2019-21

    Get PDF
    This catalog covers academic years 2019–20 and 2020–21. The Morris Catalog is in effect for nine years; this catalog is in effect from fall 2019 through the end of summer session 2028.https://digitalcommons.morris.umn.edu/catalog/1003/thumbnail.jp

    2013-2014 Course Catalog

    Get PDF
    2013-2014 Course Catalo
    • …
    corecore