7 research outputs found

    Combined Group and Exclusive Sparsity for Deep Neural Networks

    Get PDF
    Department of Computer Science and EngineeringThe number of parameters in a deep neural network is usually very large, which helps with its learning capacity but also hinders its scalability and practicality due to memory/time inefficiency and overfitting. To resolve this issue, we propose a sparsity regularization method that exploits both positive and negative correlations among the features to enforce the network to be sparse, and at the same time remove any redundancies among the features to fully utilize the capacity of the network. Specifically, we propose to use an exclusive sparsity regularization based on (1,2)-norm, which promotes competition for features between different weights, thus enforcing them to fit to disjoint sets of features. We further combine the exclusive sparsity with the group sparsity based on (2,1)-norm, to promote both sharing and competition for features in training of a deep neural network. We validate our method on multiple public datasets, and the results show that our method can obtain more compact and efficient networks while also improving the performance over the base networks with full weights, as opposed to existing sparsity regularizations that often obtain efficiency at the expense of prediction accuracy.ope

    ADVISE: Symbolism and External Knowledge for Decoding Advertisements

    Full text link
    In order to convey the most content in their limited space, advertisements embed references to outside knowledge via symbolism. For example, a motorcycle stands for adventure (a positive property the ad wants associated with the product being sold), and a gun stands for danger (a negative property to dissuade viewers from undesirable behaviors). We show how to use symbolic references to better understand the meaning of an ad. We further show how anchoring ad understanding in general-purpose object recognition and image captioning improves results. We formulate the ad understanding task as matching the ad image to human-generated statements that describe the action that the ad prompts, and the rationale it provides for taking this action. Our proposed method outperforms the state of the art on this task, and on an alternative formulation of question-answering on ads. We show additional applications of our learned representations for matching ads to slogans, and clustering ads according to their topic, without extra training.Comment: To appear, Proceedings of the European Conference on Computer Vision (ECCV

    Learning Adaptive Representations for Image Retrieval and Recognition

    Get PDF
    Content-based image retrieval is a core problem in computer vision. It has a wide range of application such as object and place recognition, digital library search, organizing image collections, and 3D reconstruction. However, robust and accurate image retrieval from a large-scale image collection still remains an open problem. For particular instance retrieval, challenges come not only from photometric and geometric changes between the query and the database images, but also from severe visual overlap with irrelevant images. On the other hand, large intra-class variation and inter-class similarity between semantic categories represents a major obstacle in semantic image retrieval and recognition. This dissertation explores learning image representations that adaptively focus on specific image content to tackle these challenges. For this purpose, three kinds of image contexts for discriminating relevant and irrelevant image content are exploited: (1) local image context, (2) semi-global image context, and (3) global image context. Novel models for learning adaptive image representations based on each context are introduced. Moreover, as a byproduct of training the proposed models, the underlying task-relevant contexts are automatically revealed from the data in a self-supervised manner. These include data-driven notion of good local mid-level features, task-relevant semi-global contexts with rich high-level information, and the hierarchy of images. Experimental evaluation illustrates the superiority of the proposed methods in the applications of place recognition, scene categorization, and particular object retrieval.Doctor of Philosoph

    Taxonomy-Regularized Semantic Deep Convolutional Neural Networks

    No full text
    We propose a novel convolutional network architecture that abstracts and dierentiates the categories based on a given class hier- archy. We exploit grouped and discriminative information provided by the taxonomy, by focusing on the general and specic components that comprise each category, through the min- and dierence-pooling operations. Without using any additional parameters or substantial increase in time complexity, our model is able to learn the features that are discriminative for classifying often confused sub-classes belonging to the same superclass, and thus improve the overall classication performance. We validate our method on CIFAR-100, Places-205, and ImageNet Animal datasets, on which our model obtains signicant improvements over the base convolutional networks
    corecore