

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/151737452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

Combined Group and Exclusive Sparsity

for Deep Neural Networks

Jaehong Yoon

Department of Electrical Engineering

Graduate School of UNIST

2018

Combined Group and Exclusive Sparsity

for Deep Neural Networks

Jaehong Yoon

Department of Electrical Engineering

Graduate School of UNIST

Combined Group and Exclusive Sparsity

for Deep Neural Networks

A thesis/dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Jaehong Yoon

12.13.2017. of submission

Approved by

Advisor

Sung Ju Hwang

Combined Group and Exclusive Sparsity

for Deep Neural Networks

Jaehong Yoon

This certifies that the thesis/dissertation of Jaehong Yoon is

approved.

12.13.2017. of submission

Abstract

The number of parameters in a deep neural network is usually very large, which helps with its

learning capacity but also hinders its scalability and practicality due to memory/time inefficiency and

overfitting. To resolve this issue, we propose a sparsity regularization method that exploits both

positive and negative correlations among the features to enforce the network to be sparse, and at the

same time remove any redundancies among the features to fully utilize the capacity of the network.

Specifically, we propose to use an exclusive sparsity regularization based on (1,2)-norm, which

promotes competition for features between different weights, thus enforcing them to fit to disjoint sets

of features. We further combine the exclusive sparsity with the group sparsity based on (2,1)-norm, to

promote both sharing and competition for features in training of a deep neural network. We validate

our method on multiple public datasets, and the results show that our method can obtain more

compact and efficient networks while also improving the performance over the base networks with

full weights, as opposed to existing sparsity regularizations that often obtain efficiency at the expense

of prediction accuracy.

Contents

1. Introduction ... 1

2. Related Work .. 3

2.1. Sparsity for Deep Neural Networks ... 3

2.2. Exclusive Feature Learning ... 3

3. Approach .. 5

3.1. Exclusive Sparsity Regularization for Deep Neural Networks .. 7

3.1.1. Exclusive sparsity on convolutional filters ... 8

3.2. Combined group & Exclusive Sparsity Regularization ... 8

3.3. Numerical Optimization .. 9

4. Experiment .. 12

4.1. Baselines and Our Models ... 12

4.2. Datasets and Base Networks .. 12

4.3. Quantitative Analysis ... 15

4.3.1. Iterative pruning .. 16

4.3.2. Convergence speed ... 17

4.3.3. Convolutional vs. fully connected layers .. 18

4.3.4. Sharing vs. competing for features ... 18

4.4. Qualitive Analysis .. 21

5. Conclusion .. 22

List of Figures

Figure 1. Illustration of the regularizers .. 6

Figure 2. Illustration of the effect of each regularizer on convolutional filters 7

Figure 3. Accuracy-efficiency trade-off .. 14

Figure 4. Further Analysis of the sparsity on CIFAR-10 dataset .. 17

Figure 5. Visualization of the last fully connected layer weights on the CIFAR-10 dataset 19

Figure 6. Visualization of the 1st convolution layer filters from the network trained on CIFAR-

10 dataset ... 20

 List of Tables

Table 1. Accuracy-efficiency trade-off on the ImageNet dataset .. 15

Table 2. Performance of CGES coupled with iterative pruning .. 15

1

Chapter 1

Introduction

Deep neural networks have shown tremendous success in recent years, achieving near-human

performances on tasks such as visual recognition (Krizhevsky et al., 2012; Szegedy et al., 2015; He et

al., 2016). One of the key factors in this success of deep network is its expressive power, which is

made possible by multiple layers of non-linear transformations. However, this expressive power

comes at a cost: increased number of parameters. Due to large number of parameters, deep networks

require large amount of memory and computation power to train. Further, large number of parameters

also mean that the model is highly susceptible to overfitting as well, if trained with insufficient data.

To resolve such issues, researchers have sought ways to make the model more compact and

lightweight by parameter reduction, via model compression (Ba & Caruana, 2014; Hinton et al.,

2014), or removing unnecessary weights either by pruning (Reed, 1993; Han et al., 2015) and ℓ1-

regularization (Collins & Kohli, 2014). However, one of the main problems of these methods is that

they often achieve such efficiency at the expense of accuracy.

How can we then obtain a compact deep network without sacrificing the prediction accuracy? One

way to achieve this goal is better utilizing the capacity of the network, by reducing redundancies in

the model parameters. In the optimal case, the weights at each layer will be fully orthogonal to each

other, and thus forming an orthogonal basis set. However, since this is a difficult constraint to satisfy,

in practice, such constraint is given only at the initialization stage (Saxe et al., 2014), or enforced

implicitly through regularizations such as dropout (Srivastava et al., 2014) that prevents feature co-

adaption. Contrary to these existing approaches, we propose to impose an explicit regularization to

reduce redundancies. Our idea is to enforce network weights at each layer to fit to different sets of

input features as much as possible. This exclusive feature learning is implemented by the exclusive

sparsity regularization based on (1,2)-norm (Zhou et al., 2010; Kong et al., 2014), which basically

promotes network weights at each layer to compete for few meaningful features from the lower layer.

However, it is not practical nor desirable to restrict each weight to be completely disjoint from others

as some features still need to be shared. For example, if the lower-layer feature is a wheel, and the

upper layer weights are features describing car and bicycle respectively, then the two upper layer

weights should share the common feature that describes the wheel. Thus, we also allow for sharing of

some important features, by introducing an additional group sparsity regularizer based on (2,1)-norm

2

and combine the two regularization terms, balancing their effect at each layer of the network to adjust

the degree of feature sharing and competition.

Our combined regularizer can be applied to all layers of a generic deep neural network, including

plain fully-connected feedforward networks and convolutional networks. We validate our regularized

network on four public datasets with different base networks, on which it achieves a compact, lighter

model while achieving superior performance over networks trained with other sparsity-inducing

regularizers, sometimes obtaining even better accuracy than the full model. As an example, on

CIFAR-10 dataset, our network obtains 2.17% accuracy improvements while using 13.72% less

number of parameters and 35.67% less floating point operations. Further empirical analysis shows

that exclusive sparsity helps the network to converge faster to a given error rate, and learn less

redundant features.

3

Chapter 2

Related Work

2.1 Sparsity for Deep Neural Networks

Obtaining compact deep networks by removing unnecessary weights, is a long-studied topic in deep

learning research. The simplest yet popular weight removal method is to prune out weak weights by

simple thresholding (Reed, 1993; Han et al., 2015). Another way to induce sparsity on weights is by

ℓ1 -regularization (Tibshirani, 1994). Collins & Kohli (2014) applied the ℓ1 -regularization to

convolutional neural networks, demonstrating that it can obtain a compact, memory-efficient network

at the expense of small reduction in the prediction accuracy. Few recent work applied group sparsity

(Yuan & Lin, 2006) regularization to deep networks, as it has a number of nice properties. By

removing an entire feature group, group sparsity can automatically decide the number of neurons

(Alvarez & Salzmann, 2016). Further, if applied between the weights at different layers, it can also be

used to decide optimal number of layers to use for the given network (Wen et al., 2016). In terms of

efficiency, structured sparsity using (2,1)-norm exhibits better data locality than the regular sparsity,

and results in larger speedups (Wen et al., 2016; Alvarez & Salzmann, 2016). We also employ the

group sparsity in our combined regularizer, but we mainly group the features across multiple filters, to

promote feature sharing among the filters. While all the previously introduced models do help reduce

number of parameters and result in certain amount of speedups, such memory and time efficiency is

mostly obtained at the expense of reduced accuracy. Our combined group and exclusive sparsity

regularization, on the other hand, do not degenerate performance, since its aim in learning sparse

weights/features is in removing redundancy to better utilize the network capacity.

2.2 Exclusive Feature Learning

There exists quite a number of work on imposing exclusivity among the learned model

parameters/features. One popular way is to enforce orthogonality, as this will minimize the

dependency and redundancy among the variables that are being regularized. Orthogonality at

initialization stage has been much studied in the deep learning context (Saxe et al., 2014), as in such a

non-convex optimization setting this can lead to convergence to a better local optimum. Zhou et al.

(2011) enforced orthogonality via explicit dot product regularization to make the parameters for

parent-level and child-level classifiers in a hierarchical classifier to be orthogonal. However, the

orthogonal regularizer is non-convex and does not scale well, since it scales quadratically to the

4

number of participating vectors. Another way to enforce exclusivity is through (1,2)-norm, which is

basically the ℓ2-norm over ℓ1-norm groups, that results in promoting sparsity across different

vectors. The (1,2)-norm is first proposed in Zhou et al. (2011), where it is used to promote

competitions among the models jointly learned in a multi-task learning framework. A similar

regularizer was used in Hwang et al., (2011) in a metric learning setting, with an additional ℓ1-

regularization that helps learn discriminative features for each metric. Kong et al. (2014) generalized

the (1,2)-norm to be used with arbitrary objective and handle overlapping groups. In deep learning

context, Goo et al. (2016) proposed a difference pooling technique that has a similar motivation to

exclusive lasso, which subtracts the common superclass level feature map from the class-specific

feature maps to learn class-exclusive features for fine-grained classification. In all existing models,

exclusivity is applied only at the class-level, and application of the exclusivity regularization to

weights at any layers of deep networks through (1,2)-norm, has not yet been explored. Further, our

regularizer is a combined term of both group and exclusive lasso which allows sharing of important

features while making each weight to be as different as possible, rather than purely exclusive feature

learning that is impractical. The regularizer proposed in Kim & Xing, (2010) is similar to ours, which

proposes a weighted (2,1)-norm that has a similar effect of varying the degree of competition and

grouping, although our regularizer is more explicit in its effect and optimization.

5

Chapter 3

Approach

Our main objective is to implement a sparse deep neural network with significantly less number of

parameters than what the original non-sparse network has, which at the same time obtains comparable

or even better performance to the original model. The training objective for a generic (deep) neural

network for classification is given as follows:

𝑚𝑖𝑛
{𝑾(𝑙)}

ℒ({𝑾(𝑙)}, 𝐷) + 𝜆 ∑ 𝛺(𝑾(𝑙))

𝐿

𝑙=1

 (1)

Here, 𝐷 = {𝒙𝑖, 𝑦𝑖}𝑖=1
𝑁 is a training dataset with N instances where 𝒙𝑖 ∈ ℝd is a d-dimensional

input feature and 𝑦𝑖 ∈ {1, … , 𝐾} is its class label which is one of the K classes, {𝑾(l)} is the set of

weights across all layers, ℒ(𝑾) is the loss parameterized by 𝑾, 𝑳 is the total number of layers,

𝑾(l) is the weight matrix (or tensor) for layer 𝑙, 𝛺(𝑾(𝑙)) is some regularization term on the

network weights at layer l, and 𝜆 is the regularization parameter that balances the loss with the

regularization.

The usual and the most often used regularization term is the 2-norm: 𝛺(𝑾(𝑙)) = ‖𝑾(𝑙)‖
2

2
 , which is

also called as the ℓ2-regularizer. The regularization has an effect of adding a bias term to reduce

variance of the model, which in turn results in a lower generalization error.

However, since our goal is in obtaining a sparse model where large portion of 𝑾(l) is zeroed out, we

want 𝛺(𝑾(𝑙)) to be a sparsity-inducing regularizer. The most common regularizer for promoting

sparsity is the ℓ1-norm:

 𝛺(𝑾(𝑙)) = ‖𝑾(𝑙)‖
1
 (2)

This ℓ1-norm regularization results in obtaining a sparse weight matrix, since it requires the solution

to be found at the corner of the ℓ1-norm ball, thus eliminating unnecessary elements. The element-

wise sparsity can be helpful when most of the features are irrelevant to the learning objective, as in the

data-driven approaches. However, as aforementioned, when applied to a deep network it usually

6

Fig 1. Illustration of the regularizers: (a) When grouping weights from the same input neuron into

each group, the group sparsity has an effect of completely removing some neurons that are not shared

across different weights (highlighted in red). (b) Exclusive sparsity, on the other hand, does not result

in removal of any input neurons, but rather it makes each upper layer unit to select from a set of

lower-layer units, that is disjoint from the sets used by other units.

results in slight accuracy reduction. Further, element-wise sparsity, while achieving a memory-

efficient model, usually do not result in meaningful speedups in practical network architectures such

as CNNs, since the bottleneck is in the convolutional operations that do not reduce much when the

number of filters stays the same (Wen et al., 2016).

Group sparsity, on the other hand, can help reduce the intrinsic complexity of the model by

eliminating a neuron or a convolutional filter as a whole, and thus can help obtain practical speedups

in deep neural networks (Wen et al., 2016; Alvarez & Salzmann, 2016). The group sparsity

regularization is defined as follows:

𝛺(𝑾(𝑙)) = ∑ ‖𝑾𝑔

(𝑙)
‖

2
𝑔

= ∑ √∑ 𝑤𝑔,𝑖
(𝑙)2

𝑖𝑔

 (3)

where 𝑔 ∈ 𝑮 is a weight group, 𝑾𝑔
(𝑙)

 is the weight matrix (or a vector) for group 𝑔 that is defined

on 𝑾(𝑙), and 𝑤𝑔,𝑖 is a weight at index 𝑖, for group 𝑔. Since ℓ2-norm has the grouping effect that

results in similar weights for correlated features, this will result in complete elimination of some

groups, thus removing some input neurons (See Figure 1, (a)). This has an effect of automatically

deciding how many neurons to use at each layer.

Still, this group sparsity does not maximally utilize the capacity of the network since there still could

7

Figure 2. Illustration of the effect of each regularizer on convolutional filters. (a) Group sparsity,

when each group is defined as a filter, can result in complete elimination of some filters that are not

shared among multiple high-level filters (Wenetal., 2016; Alvarez & Salzmann, 2016). (b) Group

sparsity, when applied across filters for the same feature, will remove certain spatial features as a

whole. (c) Exclusive sparsity enforces each convolutional filter to learn features that are as different

as possible, by promoting competition among the filters for the same spatial feature.

be redundancy among the features that are selected. Thus, we propose to apply a sparsity-inducing

regularization that obtains a sparse network weight matrix, while also minimizing the redundancy

among network weights for better utilization of the network capacity.

3.1 Exclusive Sparsity Regularization for Deep Neural Networks

Exclusive sparsity, or exclusive lasso was first introduced in Zhou et al., (2010) in multi-task learning

context. The main idea in the work is to enforce the model parameters for different tasks to compete

for features, instead of sharing features as suggested by previous work on multi-task learning that

leverages group lasso. When the task is a classification task, this makes sense since the objective is to

differentiate between classes which can be achieved by identifying discriminative feature for each

class.

8

𝛺(𝑾(𝑙)) =
1

2
∑ ‖𝑾𝑔

(𝑙)
‖

1

2

𝑔

=
1

2
∑ (∑ |𝑤𝑔,𝑖

(𝑙)
|

𝑖

)

2

𝑔

 (4)

where 𝑤𝑔,𝑖
(𝑙)

 is the 𝑖𝑡ℎ instance of the submatrix (or the vector) 𝑾𝑔
(𝑙)

. This norm is often called as

(1,2)-norm, and is basically the 2-norm over 1-norm groups. The sparsity is now enforced within each

group, as opposed to the group sparsity regularizer which promotes inter-group sparsity. Applying 2-

norm over these 1-norm groups will result in even weights among the groups; that is, all groups

should have similar number of non-sparse weights, and thus no group can have large number of non-

sparse weight. In Zhou et al. (2010), 𝑾𝑔 is defined to be the model parameter for multiple tasks on

the same feature, in which case the (1,2)-norm enforces each task predictor to fit to few features that

are most useful for it.

Exclusive sparsity can be straightforwardly applied to fully connected layers of a deep network, by

grouping network weights from the same neuron at each layer into one group and applying (1,2)-norm

on these groups (See Figure 1 (b)). This will enforce each output neuron to compete for input neurons,

which will result in learning largely disparate network weights at each layer.

3.1.1 Exclusive sparsity on convolutional filters

For convolutional layers of a convolutional neural network, exclusive sparsity can be applied in the

same manner as in fully connected layers, where we apply Eq. 4 on the convolutional filters, while

defining each group 𝑔 as the same feature across multiple convolutional filters. Figure 2 (c)

illustrates the feature groups and effect of exclusive sparsity on the convolutional filters. This will

enforce the convolutional filters to be as different as possible from each other, removing any

redundancies between them.

3.2 Combined Group & Exclusive Sparsity Regularization

As mentioned earlier, our main intuition is that there are varying degree of sharing and exclusivity

among different features. Exclusivity alone cannot result in learning an optimal set of features, since

some features need to be shared across multiple higher-level features. Thus we need to allow for some

degree of sharing across the features, while still making each weight to be sufficiently different in

order for each feature to be meaningful. How can we then come up with a regularizer that can achieve

the two seemingly conflicting goals?

In tree guided group lasso (Kim & Xing, 2010), each pair of weights are given different degree of

sharing and competition based on the similarity between the tasks given by a taxonomy, which can be

9

either semantically defined or obtained through clustering, through a regularization similar to an

elastic-net formulation. While this model can be applied at the final softmax layer, on the softmax

weight for each class, such taxonomy does not exist for the intermediate level network weights, and it

is also not efficient to obtain them through clustering or other means.

Thus we propose to simply combine the group sparsity and the exclusive sparsity together, which will

result in a similar effect, where network weights exhibit certain degree of sharing if they are

correlated, but are learned to be different on other parts that are not shared. Our combined group and

exclusive lasso regularizer is given as follows:

𝛺(𝑾(𝑙)) = ∑ ((1 − 𝜇𝑙) ‖𝑾𝑔

(𝑙)
‖

2
+

𝜇𝑙

2
‖𝑾𝑔

(𝑙)
‖

1

2

)

𝑔

 (5)

where 𝜆 is the parameter that decides the entire regularization effect, 𝑾(𝑙) is the weight matrix for

𝑙𝑡ℎ layer, and 𝜇𝑙 is the parameter for balancing the sharing and competition term at each layer.

Then how should we set the balancing term 𝜇𝑙 at each layer? One simple solution is to set all 𝜇𝑙 to

be a single constant, but a better way is to set them differently at each layer, based on the degree of

sharing and competition required at each layer. At lower layers, features will be quite generic and

might need to be shared across all high-level neurons for accurate expression of the input data,

wheareas at the top layer softmax weights, it would be better to have the weights to select features as

disjoint as possible for better discriminativity. Thus, we set 𝜇𝑙 = 𝑚 + (1 − 2𝑚)
1

𝐿−1
, to reflect such

intuition, where 𝐿 is a total number of all layers, 𝑙 ∈ {0, ⋯ , 𝐿 − 1} is an index of each layer, and

0 ≤ 𝑚 ≤ 1 is the lowest parameter value for the exclusive sparsity term. If 𝑚 = 0, the regularizer

reduces to (2,1)-norm regularizer with 𝜇𝑙 = 0 at the lowest layer, while at the topmost softmax layer,

the regularizer is an (1,2)-norm regularizer 𝜇𝑙 = 1.

3.3 Numerical Optimization

Our regularized learning objective can be solved using proximal gradient descent, which is often used

for optimizing objectives formed as a combination of both smooth and non-smooth terms. The

proximal gradient algorithm for regularized objective first obtains the intermediate solution 𝑾
𝑡+

1

2

 by

taking a gradient step using the gradient computed on the loss only, and then optimize for the

regularization term while performing Euclidean projection of it to the solution space, as in the

following formulation:

10

min
𝑾𝑡+1

Ω(𝑾𝑡+1) +
1

2𝜆𝑠
‖𝑾𝑡+1 − 𝑾

𝑡+
1
2

‖
2

2

 (6)

where 𝑾𝑡+1 s the variable to obtain after the current iteration, 𝜆 is the regularization parameter, and

𝑠 is the step size. When Ω(𝑾𝑡+1) is a group sparsity regularizer or an exclusive sparsity regularizer,

the above problem has a closed-form solution.

The solution, or the proximal operator for the group sparsity regularizer, 𝑝𝑟𝑜𝑥𝐺𝐿(𝑾) is given as

follows:

𝑝𝑟𝑜𝑥𝐺𝐿(𝑾) = (1 −

𝜆

‖𝒘𝑔‖
2

)

+

𝑤𝑔,𝑖 (7)

for all 𝑔 and 𝑖,where 𝑔 is each group, and 𝑖 is an element of in each group. The proximal operator

for the exclusive sparsity regularizer, 𝑝𝑟𝑜𝑥𝐸𝐿(𝑾), is obtained as follows:

𝑝𝑟𝑜𝑥𝐸𝐿(𝑾) = (1 −

𝜆‖𝒘𝑔‖
1

|𝑤𝑔,𝑖|
)

+

𝑤𝑔,𝑖

= 𝑠𝑖𝑔𝑛(𝑤𝑔,𝑖) (|𝑤𝑔,𝑖| − 𝜆‖𝒘𝑔‖
1

)
+

(8)

for all 𝑔 and 𝑖. The combined regularizer can be optimized simply by applying the two proximal

operators in a row at each gradient step, after updating the variable with the loss-based gradient.

Algorithm 1 describes the proximal gradient algorithm for optimizing our regularized objective.

11

Algorithm 1 Stochastic Proximal Gradient Algorithm for Combined (2,1)- and (1,2)-

regularization

Input: W, λ, µ, mini-batch size b, learning rate η

Initialize W, t

while Some predefined stopping criterion is satisfied do

Randomly select b samples from p∈{1,2,...,n},

for each layer l, do

𝑾
𝑡+

1

2

(𝑙)
≔ 𝑾𝑡

(𝑙)
−

ηst

b
∑ ∇𝑓𝑝(𝑾𝑡

(𝑙)
)𝑝 ▷Update the parameter with the gradient

of a non-regularized objective

 𝑾
𝑡+

1

2
,𝐺𝐿

(𝑙)
= 𝑝𝑟𝑜𝑥𝐺𝐿𝑾

𝑡+
1

2

(𝑙)
 ▷ Apply 𝑝𝑟𝑜𝑥𝐺𝐿 in Eq. 7

 𝑾𝑡+1
(𝑙)

= 𝑝𝑟𝑜𝑥𝐸𝐿𝑾
𝑡+

1

2
,𝐺𝐿

(𝑙)
 ▷ Apply 𝑝𝑟𝑜𝑥𝐸𝐿 in Eq. 8

end for

end while

12

Chapter 4

Experiment

We perform all experiments with convolutional neural network as the base network model. The

regularization is applied at the network weights for all layers, excluding the bias term. All models are

implemented and experimented using Tensorflow (Abadi et al. 2016) framework.

4.1 Baselines and Our Models

We compare our regularized networks against relevant baselines.

I. 𝓵𝟐. The network trained with ℓ2-regularization.

II. 𝓵𝟏. The network trained with ℓ1-regularization, which has elementwise sparse network

weights.

III. 𝑮𝒓𝒐𝒖𝒑 𝑺𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝑭𝒊𝒍𝒕𝒆𝒓. The network regularized with ℓ2,1 -norm on the weights,

which groups each convolutional filter as a group at convolutional layers. This network is an

implementation of the model in Wen et al., (2016).

IV. 𝑮𝒓𝒐𝒖𝒑 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝑭𝒆𝒂𝒕𝒖𝒓𝒆. The network that uses the same ℓ2,1-regularization as in III.,

but with each group defined as the same feature at different filters.

V. 𝑬𝒙𝒄𝒍𝒖𝒔𝒊𝒗𝒆 𝑺𝒑𝒂𝒓𝒔𝒊𝒕𝒚. This is the network whose weights at each layer are regularized

with ℓ1,2-norm only.

VI. 𝑪𝒐𝒎𝒃𝒐𝒏𝒆𝒅 𝑮𝒓𝒐𝒖𝒑 𝒂𝒏𝒅 𝑬𝒙𝒄𝒍𝒖𝒔𝒊𝒗𝒆 𝑺𝒑𝒂𝒓𝒔𝒊𝒕𝒚. The network regularized with our

combined structured sparsity on the weights. The combination weight that balances both

regularizations are dynamically set at each layer.

4.2 Datasets and Base Networks

We validate our method on four public datasets for classification, with four different convolutional

networks.

I. MNIST. This dataset contains 70,000 28×28 grayscale images of handwritten digits for

training example images, where there is 6,000 training instances and 1,000 test instances

per class. As for the base network, we use a simple convolutional neural network with

two convolutional layers and two fully connected layers.

13

II. CIFAR-10. This dataset consists of 60,000 images sized 28×28, from ten animal and

vehicle classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck).

For each class, there are 5,000 images for training and 1,000 images for test. For the base

network, we use LeNet(Lecun et al., 1998), that has two convolutional layers followed by

three fully connected layers.

III. CIFAR-100. This dataset also consists of 60,000 images of 32×32 pixels as in CIFAR-10,

but has 100 generic object classes instead of 10. For each class, 500 images are used for

training and 100 images are used for test. For the base network, we use a variant of Wide

Residual Network(Zagoruyko & Komodakis., 2016), which has 16 layers with the

widening factor of k=10.

IV. ImageNet-1K. This is the dataset for 2012 ImageNet Large Scale Visual Recognition

Challenge(Deng et al., 2009) that consists of 1,281,167 images from 1,000 generic object

categories. For evaluation, we used the validation set that consists of 50,000 images,

following the standard procedure. For the base network, we used an implementation of

AlexNet(Krizhevsky et al., 2012).

For MNIST and CIFAR-10 experiment, we train all networks from the scratch; for CIFAR-100, and

ImageNet-1K experiment where we use larger networks (WRN and AlexNet) we fine-tune the

network from the ℓ2-regularized networks, since training them from scratch takes prohibitively long

time.

14

Figure 3. Accuracy-efficiency trade-off. We report the accuracy over number of parameters, and

accuracy over FLOP to see how each sparsity-inducing regularization at various sparsity range affect

the model accuracy. The reported results are average model accuracy over three runs (with random

weight initialization), and the errorbars denote standard errors for 95% confidence interval. L2 and

L1 are the networks trained with ℓ2-regularization, ℓ1-regularization, GS-filter and GS-feature are

filter-wise and feature-wise group sparsity respectively, ES is our exclusive sparsity regularizer, and

CGES is our proposed combined group and exclusive sparsity regularizer.

15

Table 1. Accuracy-efficiency trade-off on the ImageNet dataset.

Model Accuracy % Params. Accuracy % Params.

L2 59.89% 100.0% - -

L1 57.55% 60.39% 58.45% 66.75%

ES 57.99% 60.41% 58.89% 67.37%

CGES 58.56% 60.66% 59.25% 67.24%

Table 2. Performance of CGES coupled with iterative pruning. The reported results are

averages over 3 runs and standard errors for 95% confidence interval.

Model MNIST CIFAR-10

L2(Full Network) 99.20% 78.15%

Han et al. (2015) 98.71 ± 0.03% 76.37 ± 0.42%

CGES 99.16 ± 0.03% 78.97 ± 0.41%

4.3 Quantitative Analysis

We first validate whether our sparsity-inducing regularizations result in better accuracy-efficiency

trade-off compared to baseline methods, by measuring the prediction accuracy over number of

parameters, and number of floating point operations (FLOP) for each method.

Figure 3 shows the prediction accuracy of the different models over number of parameters/FLOP,

obtained by differentiating the sparsity-inducing regularization parameter for each method. As

expected, ℓ1-regularization greatly reduces the number of parameters, while maintaining a similar

performance to the original model. The group sparsity regularization in general performs worse than

ℓ1, but achieves better accuracy in certain sparsity ranges. The exclusive sparsity improves the

performance over the base ℓ2-regularization model in low-sparsity range which is especially well

shown in CIFAR-10 result, but degenerates performance as the sparsity increases. We attribute this to

the fact that exclusive sparsity aims to make each weight/filter to fit to completely disjoint sets of low-

level features, which is unrealistic as features may need to fit to the same set of low-level features for

accurate representation.

16

Finally, our combined group and exclusive sparsity, which allows for certain degree of sharing

between the weights/features while enforcing exclusivity, achieves the best accuracy/parameter trade-

off, achieving similar or better performance gain to the exclusive sparsity while also greatly reducing

the number of parameters. Figure 3 (a) shows the results on the MNIST dataset, on which our CGES

obtains no accuracy reduction, using 36.48% less number of parameters and 14.46% less computation.

On CIFAR-10 dataset, CGES improves the classification accuracy over the ℓ2 baselines by 2.17%,

using 13.72% less number of parameters using 35.67% less FLOP. CGES obtains slight accuracy

reduction of 1.15% on CIFAR-100 dataset, using only 51.22% of parameters and 42.77% less FLOP.

On ImageNet (Table 1), CGES obtains similar or slightly worse performance to the full network while

using 60%-68% of its parameters, while ℓ1 shows noticeable performance degeneration at the same

sparsity level.

4.3.1 Iterative pruning

Iterative pruning(Han et al. 2015) is another effective method for obtaining a sparse network while

maintaining high accuracy. As iterative pruning is orthogonal to our method, we can couple the two

methods to obtain even better performance per number of parameters used; specifically, we replace

the usual weight decay regularizer used in Han et al., (2015) with our CGES regularizer. We report

the accuracy of this combined model on MNIST and CIFAR-10 dataset, when using 10% of the

parameters of the full network (Table 2).

The results show that CGES coupled with iterative pruning obtains similar or even better results to the

original model using only a fraction of the parameters, significantly outperforming the base pruning

model which suffers substantial accuracy loss.

17

Figure 4. Further Analysis of the exclusive sparsity on CIFAR-10 dataset. (a) Convergence speed:

Networks regularized with ES(Light Blue) or CGES (Dark Blue) converge fastest to a given error rate,

compared to ℓ2. (b) Effect of exclusive sparsity at different types of layers: The network regularized

with exclusive sparsity at all layers performed better with higher sparsity, compared to models that

used ES only at convolutional, or fully connected layers. (c) Effect of 𝜇𝑙: ES-increasing is our

combined regularizer, where exclusivity increases with network layer l. For ES-constant, we set 𝜇𝑙 =

0.5 at all layers.

4.3.2 Convergence speed

We further analyze the empirical convergence rate of our regularized network, since it will be

impractical if the regularized network requires much longer iterations to reach the same accuracy.

Interestingly, we empirically found that our exclusive sparsity regularizer also helps network achieve

the same error using much fewer iterations (Figure 4 (a)), compared to base ℓ2-regularization. This

faster convergence agrees with the observations in Saxe et al., (2014), where networks whose weights

are initialized as random orthogonal matrices converged faster than networks with random Gaussian

initialization.

18

4.3.3 Convolutional vs. fully connected layers

To see how much effect our combined regularizer has on different types of layers, we experiment

applying the model only to the fully connected layer, or convolutional layers, while applying usual

ℓ2-regularizer to other layers. Figure 4 (b) shows the result of this experiment, where we plot the

accuracy over percentage of parameters used, for models that applies ES only to fully connected

layers, only to convolutional layers, and both. We observe improvements on all models, which shows

the effectiveness of the exclusive sparsity regularizer to all types of network weights. Further, ES

results in larger improvements on convolutional layers, which makes sense since lower-layer features

are more important as they are more generic across different classes, than the features learned at fully

connected layers. However, conv layers obtained the best accuracy at low-sparsity range, since strict

enforcement of exclusivity hurts the representational power of the features, whereas FC layers

obtained improvements even on high-sparsity range; this may be because loss of expressiveness could

be compensated by better discriminativity of the features at high level.

4.3.4 Sharing vs. competing for features

We further explore how varying the degree of sharing and competition affect the accuracy and

efficiency of the model, by experimenting with different configurations of 𝜇𝑙 in Eq. 5 at each layer.

We report the results in Figure 4 (c). Specifically, we test two different approaches to balance the

degree of sharing and competition at each layer. The first model, ES-Increasing, is the actual

combination we have used in our method which increases the effect of exclusive sparsity with

increasing 𝑙. This model reflects our intuition that competition will help at high layers, while sharing

will help more at lower layers. The second model, ES-Constant combines the two terms with 𝜇𝑙 =

0.5 throughout all layers. We observe that ES-Increasing works better than ES-Constant across all

sparsity ranges, which shows that our scheme of increasing exclusivity at higher layers indeed helps

improve the model performance.

19

Figure 5. Visualizations of the last fully connected layer weights on the CIFAR-10 dataset. These

figures show the weight of first 50 weights out of 192 weights. The rows are output units for each class

and the columns are features.

e) CGES

c) Group Sparsity

a) 𝓵𝟐-regularization b) 𝓵𝟏-regularization

d) Exclusive Sparsity

20

Figure 6. Visualizaiton of the 𝟏𝒔𝒕 convolution layer filters from the network trained on CIFAR-10

dataset. (a) ℓ2-regularization results in smooth non-sparse filters. (b) ℓ1-regualrization results in

filters that are element wise sparse. (c) GS-Filter results in complete removal of some filters. (d)

CGES obtains sharper filters with some spatial features completely zeroed out, from competition

among the filters.

b) L1-regularization a) L2-regularization

c) Group Sparsity, Filter d) CGES

21

4.4 Qualitative Analysis

For further qualitative analysis, we visualize the weights and convolutional filters obtained using the

baselines and our methods.

Figure 5 visualizes the weights of the softmax layer for different regularization methods, from the

network trained on the CIFAR-10 dataset. Each row is the softmax parameter for each class. ℓ2 and

ℓ1 work as expected, resulting in non-sparse and elementwise sparse weights. The group sparsity

regularizer results in the total elimination of certain features that are not shared across multiple classes.

The exclusive sparsity regularizer, when used on its own, results in disjoint feature selection for each

class. However, when combined with the group lasso, it allows certain degree of feature reuse, while

still obtaining parameters that are largely disparate across classes.

To show that such effect is not confined to the fully connected layer, we also visualize the

convolutional filters in the first convolutional layer of the network trained on the CIFAR-10 dataset,

in Figure 6. We observe that the combined group and exclusive sparsity regularizer results in filters

that are much sharper than the ones that are obtained by ℓ1 or group sparsity regularization, with

some spatial features dropped altogether from the competition with other filters. Further, there is less

redundancy among the filters, unlike the filters learned by other regularization methods. Note that we

set the exclusivity factor 𝜇1 = 0.8 just for visualization purpose, since our weighting scheme will set

𝜇1 as a low value in the first convolutional layer.

22

Chapter 5

Conclusion

In this work, we proposed a novel regularizer for generic deep neural networks that effectively utilizes

the capacity of the network, by exploiting the sharing and competing relationships among different

network weights. Specifically, we propose to use an exclusive sparsity regularization based on (1,2)-

norm on the network weights, along with group sparsity regularization using (2,1)-norm, such that

exclusive sparsity enforces the network weights to use input neurons that are as different as possible

from the other weights, while the group sparsity allows for some degree of sharing among them, as it

is impossible to make the network weights to fit to completely disjoint set of features. We validate our

method on some public datasets for both the accuracy and efficiency against other sparsity-inducing

regularizers, and the results show that our combined regularizer helps obtain even better performance

than the original full network, while significantly reducing the memory and computation requirements.

23

References

1. Abadi, Mart´ın, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro, Craig,

Corrado, Greg S, Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al. Tensorflow: Large-scale

Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467, 2016.

2. Alvarez, Jose M and Salzmann, Mathieu. Learning the number of neurons in deep networks.

In NIPS. 2016.

3. Ba, Jimmy and Caruana, Rich. Do deep nets really need to be deep? In NIPS, 2014.

4. Collins, Maxwell D and Kohli, Pushmeet. Memory bounded deep convolutional networks.

arXiv preprint arXiv:1412.1442, 2014.

5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and ei, L. Fei-F˙ Imagenet: A Large-Scale

Hierarchical Image Database. In CVPR, 2009.

6. Goo, Wonjoon, Kim, Juyong, Kim, Gunhee, and Hwang, Sung Ju. Taxonomy-Regularized

Semantic Deep Convolutional Neural Networks. In ECCV, 2016.

7. Han, Song, Pool, Jeff, Tran, John, and Dally, William. Learning both weights and connections

for efficient neural network. In NIPS. 2015.

8. He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for

image recognition. In CVPR, 2016.

9. Hinton, Geoffrey, Vinyals, Oriol, and Dean, Jeff. Distilling the knowledge in a neural

network. In NIPS 2014 Deep Learning Workshop, 2014.

10. Hwang, Sung Ju, Grauman, Kristen, and Sha, Fei. Learning a tree of metrics with disjoint

visual features. In NIPS, 2011.

11. Kim, S. and Xing, E. P. Tree-guided group lasso for multitask regression with structured

sparsity. In ICML, pp. 543–550, 2010.

12. Kong, Deguang, Fujimaki, Ryohei, Liu, Ji, Nie, Feiping, and Ding, Chris. Exclusive feature

learning on arbitrary structures via `1,2-norm. In NIPS. 2014.

13. Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. ImageNet Classification with

Deep Convolutional Neural Networks. In NIPS, 2012.

14. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient based Learning Applied to

Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

15. Reed, R. Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4(5):740–747,

Sep 1993. ISSN 1045-9227. doi: 10.1109/72.248452.

16. Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. In ICLR, 2014.

17. Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov,

Ruslan. Dropout: A simple way to prevent neural networks from overfitting. Journal of

24

Machine Learning Research, 15:1929–1958, 2014.

18. Szegedy, Christian, Liu, Wei, Jia, Yangqing, Sermanet, Pierre, Reed, Scott, Anguelov,

Dragomir, Erhan, Dumitru, Vanhoucke, Vincent, and Rabinovich, Andrew. Going Deeper

with Convolutions. In CVPR, 2015.

19. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B, 58:267–288, 1994.

20. Wen, Wei, Wu, Chunpeng, Wang, Yandan, Chen, Yiran, and Li, Hai. Learning structured

sparsity in deep neural networks. In NIPS, pp. 2074–2082. 2016.

21. Yuan, Ming and Lin, Yi. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society, Series B, 68:49–67, 2006.

22. Zagoruyko, Sergey and Komodakis, Nikos. Wide residual networks. In BMVC, 2016.

23. Zhou, D., Xiao, L., and Wu, M. Hierarchical Classification via Orthogonal Transfer. In ICML,

2011.

24. Zhou, Yang, Jin, Rong, and Hoi, Steven C. H. Exclusive lasso for multi-task feature selection.

Journal of Machine Learning Research, 9:988–995, 2010.

25

26

27

	1. Introduction
	2. Related Work
	2.1. Sparsity for Deep Neural Networks
	2.2. Exclusive Feature Learning

	3. Approach
	3.1. Exclusive Sparsity Regularization for Deep Neural Networks
	3.1.1. Exclusive sparsity on convolutional filters

	3.2. Combined group & Exclusive Sparsity Regularization
	3.3. Numerical Optimization

	4. Experiment
	4.1. Baselines and Our Models
	4.2. Datasets and Base Networks
	4.3. Quantitative Analysis
	4.3.1. Iterative pruning
	4.3.2. Convergence speed
	4.3.3. Convolutional vs. fully connected layers
	4.3.4. Sharing vs. competing for features

	4.4. Qualitive Analysis

	5. Conclusion

<startpage>10
1. Introduction 1
2. Related Work 3
 2.1. Sparsity for Deep Neural Networks 3
 2.2. Exclusive Feature Learning 3
3. Approach 5
 3.1. Exclusive Sparsity Regularization for Deep Neural Networks 7
 3.1.1. Exclusive sparsity on convolutional filters 8
 3.2. Combined group & Exclusive Sparsity Regularization 8
 3.3. Numerical Optimization 9
4. Experiment 12
 4.1. Baselines and Our Models 12
 4.2. Datasets and Base Networks 12
 4.3. Quantitative Analysis 15
 4.3.1. Iterative pruning 16
 4.3.2. Convergence speed 17
 4.3.3. Convolutional vs. fully connected layers 18
 4.3.4. Sharing vs. competing for features 18
 4.4. Qualitive Analysis 21
5. Conclusion 22
</body>

