155 research outputs found

    The Economic Impact of Transportation Network Companies on the Taxi Industry

    Get PDF
    Transportation Network Companies (TNC) are companies that use online-enabled platforms to connect passengers with drivers. In recent years, they have sparked controversy with the taxi industry, which accuses TNCs of operating unfairly. In my study, I look at taxi regulation, consumer transportation preferences, and costs and benefits of TNCs. I analyze data comparing three of these companies, Uber, Lyft, and Sidecar, with a traditional taxicab, and evaluate trends in taxi employment from the Bureau of Labor Statistics. I find that Transportation Network Companies generally have shorter wait times, cheaper prices, and increased convenience, aspects that appeal to consumer preferences. I also find that taxi driver employment tends to fluctuate with economic conditions, however cities that are more likely to use TNCs exhibit smaller growth. I predict that at current conditions, TNCs such as Uber and Lyft will overtake taxi services. Thus, the taxi industry must focus on increasing TNC regulation, creating innovative technology, and modifying its service to appeal to consumers

    The sharing economy in the global South: Uber’s precarious labour force in Johannesburg

    Get PDF
    Submitted in the partial fulfilment for the Degree of Master of Arts in Development Studies Faculty of Humanities University of the Witwatersrand, March 2017The precarious existence of Uber drivers operating within Johannesburg’s metropolitan area is the primary area of study in which this dissertation has undertaken. Driver precarity, defined in the study as the loss of labour market security in various forms, is argued to stem from Uber’s sharing economy-inspired business model. The analysis of Uber’s business model, substantively focuses on the service’s dynamic pricing model of fare price setting, the implementation of a ‘rating’ system in which to evaluate driver performance and the use of ‘independent contractor’ labour. It is argued that each of these three Uber business practices place drivers in a position of precarity in the realm of their income, employment, work and job security. The study mobilises a qualitative research methodology, enlisting the methods of unstructured interviews on eight active Uber drivers, four autoethnographical observations on real-time work behaviour and document analysis to generate data for analysis. The prevailing argument made regarding Uber’s precarity-creation, is aided through a consultation of Guy Standing’s theorisation on precarity (2011), with Harvey’s flexible Accumulation theory (1990), Foucault’s Panopticism thesis (1975) and Hochschild’s emotional labour theory (1983) broadening the scope of the analysis.XL201

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Spatial Distribution of Supply and the Role of Market Thickness: Theory and Evidence from Ride Sharing

    Get PDF
    This paper studies the e ects of economies of density in transportation markets, focusing on ridesharing. Our theoretical model predicts that (i) economies of density skew the supply of drivers away from less dense regions, (ii) the skew will be more pronounced for smaller platforms, and (iii) rideshare platforms do not nd this skew ecient and thus use prices and wages to mitigate (but not eliminate) it. We then develop a general empirical strategy with simple implementation and limited data requirements to test for spatial skew of supply from demand. Applying our method to ride-level, multi-platform data from New York City (NYC), we indeed nd evidence for a skew of supply toward busier areas, especially for smaller platforms. We discuss the implications of our analysis for business strategy (e.g., surge pricing) and public policy (e.g., consequences of breaking up or downsizing a rideshare platform)

    Traffic Speed Prediction and Mobility Behavior Analysis Using On-Demand Ride-Hailing Service Data

    Get PDF
    Providing accurate traffic speed prediction is essential for the success of Intelligent Transportation Systems (ITS) deployments. Accurate traffic speed prediction allows traffic managers take proper countermeasures when emergent changes happen in the transportation network. In this thesis, we present a computationally less expensive machine learning approach XGBoost to predict the future travel speed of a selected sub-network in Beijing\u27s transportation network. We perform different experiments for predicting speed in the network from future 1 min to 20 min. We compare the XGBoost approach against other well-known machine learning and statistical models such as linear regression and decision tree, gradient boosting tree, and random forest regression models. Three metrics MAE, MAPE, and RMSE are used to evaluate the performance of the selected models. Our results show that XGBoost outperforms other models across different experiment conditions. Based on the prediction accuracy of different links, we find that the number of vehicles operating in a network also affect prediction performance. In addition, understanding individual mobility behavior is critical for modeling urban dynamics. It provides deeper insights on the generative mechanisms of human movements. Recently, different types of emerging data sources such as mobile phone call detail records, social media posts, GPS observations, and smart card transactions have been used to analyze individual mobility behavior. In this thesis, we report the spatio-temporal mobility behaviors using large-scale data collected from a ride-hailing service platform. Based on passenger-level travel data, we develop an algorithm to identify users\u27 visited places and the functions of those places. To characterize temporal movement patterns, we reveal the differences in trip generation characteristics between commuting and non-commuting trips and the distribution of gap time between consecutive trips. To understand spatial mobility patterns, we observe the distribution of the number of visited place and their rank, the spatial distribution of residences and workplaces, and the distribution of travel distance and travel time. Our analysis highlights the differences in mobility patterns of the users of ride-hailing services, compared to the findings of existing mobility studies based on other data sources. Our study shows a tremendous potential of developing high-resolution individual-level mobility model that can predict the demand of emerging mobility services with high accuracy

    QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis

    Full text link
    [EN] Road traffic pollution is one of the key factors affecting urban air quality. There is a consensus in the community that the efficient use of public transport is the most effective solution. In that sense, much effort has been made in the data mining discipline to come up with solutions able to anticipate taxi demands in a city. This helps to optimize the trips made by such an important urban means of transport. However, most of the existing solutions in the literature define the taxi demand prediction as a regression problem based on historical taxi records. This causes serious limitations with respect to the required data to operate and the interpretability of the prediction outcome. In this paper, we introduce QUADRIVEN (QUalitative tAxi Demand pRediction based on tIme-Variant onlinE social Network data analysis), a novel approach to deal with the taxi demand prediction problem based on human-generated data widely available on online social networks. The result of the prediction is defined on the basis of categorical labels that allow obtaining a semantically-enriched output. Finally, this proposal was tested with different models in a large urban area, showing quite promising results with an F1 score above 0.8.This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Projects 20813/PI/18 and 20530/PDC/18 and by the Spanish Ministry of Science, Innovation and Universities under Grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5.Terroso-Saenz, F.; Muñoz-Ortega, A.; Cecilia-Canales, JM. (2019). QUADRIVEN: A Framework for Qualitative Taxi Demand Prediction Based on Time-Variant Online Social Network Data Analysis. Sensors. 19(22):1-22. https://doi.org/10.3390/s19224882S1221922Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., … Schwartz, J. D. (2017). Air Pollution and Mortality in the Medicare Population. New England Journal of Medicine, 376(26), 2513-2522. doi:10.1056/nejmoa1702747Li, B., Cai, Z., Jiang, L., Su, S., & Huang, X. (2019). Exploring urban taxi ridership and local associated factors using GPS data and geographically weighted regression. Cities, 87, 68-86. doi:10.1016/j.cities.2018.12.033Yang, Y., Yuan, Z., Fu, X., Wang, Y., & Sun, D. (2019). Optimization Model of Taxi Fleet Size Based on GPS Tracking Data. Sustainability, 11(3), 731. doi:10.3390/su11030731Smith, A. W., Kun, A. L., & Krumm, J. (2017). Predicting taxi pickups in cities. Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers. doi:10.1145/3123024.3124416Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & Lin, L. (2019). Contextualized Spatial–Temporal Network for Taxi Origin-Destination Demand Prediction. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3875-3887. doi:10.1109/tits.2019.2915525Hawelka, B., Sitko, I., Beinat, E., Sobolevsky, S., Kazakopoulos, P., & Ratti, C. (2014). Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 41(3), 260-271. doi:10.1080/15230406.2014.890072James, N. A., Kejariwal, A., & Matteson, D. S. (2016). Leveraging cloud data to mitigate user experience from ‘breaking bad’. 2016 IEEE International Conference on Big Data (Big Data). doi:10.1109/bigdata.2016.7841013Kuang, L., Yan, X., Tan, X., Li, S., & Yang, X. (2019). Predicting Taxi Demand Based on 3D Convolutional Neural Network and Multi-task Learning. Remote Sensing, 11(11), 1265. doi:10.3390/rs11111265Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., … Li, L.-J. (2016). YFCC100M. Communications of the ACM, 59(2), 64-73. doi:10.1145/2812802Cho, E., Myers, S. A., & Leskovec, J. (2011). Friendship and mobility. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11. doi:10.1145/2020408.2020579Estevez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized Mutual Information Feature Selection. IEEE Transactions on Neural Networks, 20(2), 189-201. doi:10.1109/tnn.2008.2005601Zheng, X., Han, J., & Sun, A. (2018). A Survey of Location Prediction on Twitter. IEEE Transactions on Knowledge and Data Engineering, 30(9), 1652-1671. doi:10.1109/tkde.2018.2807840Assam, R., & Seidl, T. (2014). Context-based location clustering and prediction using conditional random fields. Proceedings of the 13th International Conference on Mobile and Ubiquitous Multimedia - MUM ’14. doi:10.1145/2677972.2677989Genuer, R., Poggi, J.-M., Tuleau-Malot, C., & Villa-Vialaneix, N. (2017). Random Forests for Big Data. Big Data Research, 9, 28-46. doi:10.1016/j.bdr.2017.07.003Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., … Lv, W. (2017). The Simpler The Better. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. doi:10.1145/3097983.3098018Markou, I., Rodrigues, F., & Pereira, F. C. (2018). Real-Time Taxi Demand Prediction using data from the web. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). doi:10.1109/itsc.2018.8569015Zhou, Y., Wu, Y., Wu, J., Chen, L., & Li, J. (2018). Refined Taxi Demand Prediction with ST-Vec. 2018 26th International Conference on Geoinformatics. doi:10.1109/geoinformatics.2018.8557158Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., & Damas, L. (2013). Predicting Taxi–Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1393-1402. doi:10.1109/tits.2013.2262376Jiang, S., Chen, W., Li, Z., & Yu, H. (2019). Short-Term Demand Prediction Method for Online Car-Hailing Services Based on a Least Squares Support Vector Machine. IEEE Access, 7, 11882-11891. doi:10.1109/access.2019.289182
    • …
    corecore