4,403 research outputs found

    Manipulating Highly Deformable Materials Using a Visual Feedback Dictionary

    Full text link
    The complex physical properties of highly deformable materials such as clothes pose significant challenges fanipulation systems. We present a novel visual feedback dictionary-based method for manipulating defoor autonomous robotic mrmable objects towards a desired configuration. Our approach is based on visual servoing and we use an efficient technique to extract key features from the RGB sensor stream in the form of a histogram of deformable model features. These histogram features serve as high-level representations of the state of the deformable material. Next, we collect manipulation data and use a visual feedback dictionary that maps the velocity in the high-dimensional feature space to the velocity of the robotic end-effectors for manipulation. We have evaluated our approach on a set of complex manipulation tasks and human-robot manipulation tasks on different cloth pieces with varying material characteristics.Comment: The video is available at goo.gl/mDSC4

    Task-oriented kinematic design of a symmetric assistive climbing robot

    Get PDF
    ASIBOT is an assistive climbing robot that is capable of aiding in daily tasks from fixed docking stations in the environment. A task-oriented design process was applied to improve the robot kinematic structure, which was based on the grid method. Twelve different robot designs were optimized for typical kitchen scenarios, followed by a quantitative comparison

    Design, analysis and kinematic control of highly redundant serial robotic arms

    Get PDF
    The use of robotic manipulators in industry has grown in the last decades to improve and speed up industrial processes. Industrial manipulators started to be investigated for machining tasks since they can cover larger workspaces, increasing the range of achievable operations and improving flexibility. The company Nimbl’Bot developed a new mechanism, or module, to build stiffer flexible serial modular robots for machining applications. This manipulator is a kinematic redundant robot with 21 degrees of freedom. This thesis thoroughly analysis the Nimbl’Bot robot features and is divided into three main topics. The first topic regards using a task priority kinematic redundancy resolution algorithm for the Nimbl’Bot robot tracking trajectory while optimizing its kinetostatic performances. The second topic is the kinematic redundant robot design optimization with respect to a desired application and its kinetostatic performance. For the third topic, a new workspace determination algorithm is proposed for kinematic redundant manipulators. Several simulation tests are proposed and tested on some Nimbl’Bot robot designs for each subjects

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore