10,405 research outputs found

    Performance-oriented dependency parsing

    Get PDF
    In the last decade a lot of dependency parsers have been developed. This book describes the motivation for the development of yet another parser - MDParser. The state of the art is presented and the deficits of the current developments are discussed. The main problem of the current parsers is that the task of dependency parsing is treated independently of what happens before and after it. However, in practice parsing is rarely done for the sake of parsing itself, but rather in order to use the results in a follow-up application. Additionally, current parsers are accuracy-oriented and focus only on the quality of the results, neglecting other important properties, especially efficiency. The evaluation of some NLP technologies is sometimes as difficult as the task itself. For dependency parsing it was long thought not to be the case, however, some recent works show that the current evaluation possibilities are limited. This book proposes a methodology to account for the weaknesses and combine the strengths of the current approaches. Finally, MDParser is evaluated against other state-of-the-art parsers. The results show that it is the fastest parser currently available and it is able to process plain text, which other parsers usually cannot. The results are slightly behind the top accuracies in the field, however, it is demonstrated that it is not decisive for applications

    Performance-oriented dependency parsing

    Get PDF
    In the last decade a lot of dependency parsers have been developed. This book describes the motivation for the development of yet another parser - MDParser. The state of the art is presented and the deficits of the current developments are discussed. The main problem of the current parsers is that the task of dependency parsing is treated independently of what happens before and after it. However, in practice parsing is rarely done for the sake of parsing itself, but rather in order to use the results in a follow-up application. Additionally, current parsers are accuracy-oriented and focus only on the quality of the results, neglecting other important properties, especially efficiency. The evaluation of some NLP technologies is sometimes as difficult as the task itself. For dependency parsing it was long thought not to be the case, however, some recent works show that the current evaluation possibilities are limited. This book proposes a methodology to account for the weaknesses and combine the strengths of the current approaches. Finally, MDParser is evaluated against other state-of-the-art parsers. The results show that it is the fastest parser currently available and it is able to process plain text, which other parsers usually cannot. The results are slightly behind the top accuracies in the field, however, it is demonstrated that it is not decisive for applications

    Concurrent Lexicalized Dependency Parsing: The ParseTalk Model

    Full text link
    A grammar model for concurrent, object-oriented natural language parsing is introduced. Complete lexical distribution of grammatical knowledge is achieved building upon the head-oriented notions of valency and dependency, while inheritance mechanisms are used to capture lexical generalizations. The underlying concurrent computation model relies upon the actor paradigm. We consider message passing protocols for establishing dependency relations and ambiguity handling.Comment: 90kB, 7pages Postscrip

    Preventing Atomicity Violations with Contracts

    Full text link
    Software developers are expected to protect concurrent accesses to shared regions of memory with some mutual exclusion primitive that ensures atomicity properties to a sequence of program statements. This approach prevents data races but may fail to provide all necessary correctness properties.The composition of correlated atomic operations without further synchronization may cause atomicity violations. Atomic violations may be avoided by grouping the correlated atomic regions in a single larger atomic scope. Concurrent programs are particularly prone to atomicity violations when they use services provided by third party packages or modules, since the programmer may fail to identify which services are correlated. In this paper we propose to use contracts for concurrency, where the developer of a module writes a set of contract terms that specify which methods are correlated and must be executed in the same atomic scope. These contracts are then used to verify the correctness of the main program with respect to the usage of the module(s). If a contract is well defined and complete, and the main program respects it, then the program is safe from atomicity violations with respect to that module. We also propose a static analysis based methodology to verify contracts for concurrency that we applied to some real-world software packages. The bug we found in Tomcat 6.0 was immediately acknowledged and corrected by its development team
    corecore