12,689 research outputs found

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Model-Based Proactive Read-Validation in Transaction Processing Systems

    Get PDF
    Concurrency control protocols based on read-validation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14 % better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory

    Design and Implementation of a Distributed Middleware for Parallel Execution of Legacy Enterprise Applications

    Get PDF
    A typical enterprise uses a local area network of computers to perform its business. During the off-working hours, the computational capacities of these networked computers are underused or unused. In order to utilize this computational capacity an application has to be recoded to exploit concurrency inherent in a computation which is clearly not possible for legacy applications without any source code. This thesis presents the design an implementation of a distributed middleware which can automatically execute a legacy application on multiple networked computers by parallelizing it. This middleware runs multiple copies of the binary executable code in parallel on different hosts in the network. It wraps up the binary executable code of the legacy application in order to capture the kernel level data access system calls and perform them distributively over multiple computers in a safe and conflict free manner. The middleware also incorporates a dynamic scheduling technique to execute the target application in minimum time by scavenging the available CPU cycles of the hosts in the network. This dynamic scheduling also supports the CPU availability of the hosts to change over time and properly reschedule the replicas performing the computation to minimize the execution time. A prototype implementation of this middleware has been developed as a proof of concept of the design. This implementation has been evaluated with a few typical case studies and the test results confirm that the middleware works as expected

    Hardware-aware block size tailoring on adaptive spacetree grids for shallow water waves.

    Get PDF
    Spacetrees are a popular formalism to describe dynamically adaptive Cartesian grids. Though they directly yield an adaptive spatial discretisation, i.e. a mesh, it is often more efficient to augment them by regular Cartesian blocks embedded into the spacetree leaves. This facilitates stencil kernels working efficiently on homogeneous data chunks. The choice of a proper block size, however, is delicate. While large block sizes foster simple loop parallelism, vectorisation, and lead to branch-free compute kernels, they bring along disadvantages. Large blocks restrict the granularity of adaptivity and hence increase the memory footprint and lower the numerical-accuracy-per-byte efficiency. Large block sizes also reduce the block-level concurrency that can be used for dynamic load balancing. In the present paper, we therefore propose a spacetree-block coupling that can dynamically tailor the block size to the compute characteristics. For that purpose, we allow different block sizes per spacetree node. Groups of blocks of the same size are identied automatically throughout the simulation iterations, and a predictor function triggers the replacement of these blocks by one huge, regularly rened block. This predictor can pick up hardware characteristics while the dynamic adaptivity of the fine grid mesh is not constrained. We study such characteristics with a state-of-the-art shallow water solver and examine proper block size choices on AMD Bulldozer and Intel Sandy Bridge processors

    A Decision-Support Framework For Using Value Capture to Fund Public Transit: Lessons From Project-Specific Analyses, Research Report 11-14

    Get PDF
    Local and state governments provide 75 percent of transit funds in the United States. With all levels of governments under significant fiscal stress, any new transit funding mechanism is welcome. Value capture (VC) is one such mechanism. Based on the “benefits received” principle, VC involves the identification and capture of public infrastructure-led increase in land value. While the literature has extensively demonstrated the property-value impacts of transit investments and has empirically simulated the potential magnitude of VC revenues for financing transit facilities, very little research has examined the suitability of VC mechanisms for specific transit projects. This report aims to fill this research gap by examining five VC mechanisms in depth: tax-increment financing (TIF), special assessment districts (SADs), transit impact fees, joint developments, and air rights. The report is intended to assist practitioners in gauging the legal, financial, and administrative suitability of VC mechanisms for meeting project-specific funding requirements

    Extending snBench to Support Hierarchical and Configurable Scheduling

    Full text link
    It is useful in systems that must support multiple applications with various temporal requirements to allow application-specific policies to manage resources accordingly. However, there is a tension between this goal and the desire to control and police possibly malicious programs. The Java-based Sensor Execution Environment (SXE) in snBench presents a situation where such considerations add value to the system. Multiple applications can be run by multiple users with varied temporal requirements, some Real-Time and others best effort. This paper outlines and documents an implementation of a hierarchical and configurable scheduling system with which different applications can be executed using application-specific scheduling policies. Concurrently the system administrator can define fairness policies between applications that are imposed upon the system. Additionally, to ensure forward progress of system execution in the face of malicious or malformed user programs, an infrastructure for execution using multiple threads is described
    corecore