288,596 research outputs found

    Bio-inspired speed detection and discrimination

    Get PDF
    In the field of computer vision, a crucial task is the detection of motion (also called optical flow extraction). This operation allows analysis such as 3D reconstruction, feature tracking, time-to-collision and novelty detection among others. Most of the optical flow extraction techniques work within a finite range of speeds. Usually, the range of detection is extended towards higher speeds by combining some multiscale information in a serial architecture. This serial multi-scale approach suffers from the problem of error propagation related to the number of scales used in the algorithm. On the other hand, biological experiments show that human motion perception seems to follow a parallel multiscale scheme. In this work we present a bio-inspired parallel architecture to perform detection of motion, providing a wide range of operation and avoiding error propagation associated with the serial architecture. To test our algorithm, we perform relative error comparisons between both classical and proposed techniques, showing that the parallel architecture is able to achieve motion detection with results similar to the serial approach

    Bi-PointFlowNet: Bidirectional Learning for Point Cloud Based Scene Flow Estimation

    Full text link
    Scene flow estimation, which extracts point-wise motion between scenes, is becoming a crucial task in many computer vision tasks. However, all of the existing estimation methods utilize only the unidirectional features, restricting the accuracy and generality. This paper presents a novel scene flow estimation architecture using bidirectional flow embedding layers. The proposed bidirectional layer learns features along both forward and backward directions, enhancing the estimation performance. In addition, hierarchical feature extraction and warping improve the performance and reduce computational overhead. Experimental results show that the proposed architecture achieved a new state-of-the-art record by outperforming other approaches with large margin in both FlyingThings3D and KITTI benchmarks. Codes are available at https://github.com/cwc1260/BiFlow.Comment: Accepted as a conference paper at European Conference on Computer Vision (ECCV) 202

    FlowNet: Learning Optical Flow with Convolutional Networks

    Full text link
    Convolutional neural networks (CNNs) have recently been very successful in a variety of computer vision tasks, especially on those linked to recognition. Optical flow estimation has not been among the tasks where CNNs were successful. In this paper we construct appropriate CNNs which are capable of solving the optical flow estimation problem as a supervised learning task. We propose and compare two architectures: a generic architecture and another one including a layer that correlates feature vectors at different image locations. Since existing ground truth data sets are not sufficiently large to train a CNN, we generate a synthetic Flying Chairs dataset. We show that networks trained on this unrealistic data still generalize very well to existing datasets such as Sintel and KITTI, achieving competitive accuracy at frame rates of 5 to 10 fps.Comment: Added supplementary materia
    corecore