3,088 research outputs found

    DRONESCAPE:Distributed Rapid On-site NEtwork Self-deploying Cellular Advanced Phone Environment

    Get PDF
    When disasters happen, the speed with which first responders and emergency personnel can contact and be contacted by the people affected by the disaster during the first minutes or hours is critical. Early communications can make the difference between life and death. During a disaster communications infrastructure of the affected area is likely to be compromised. This project proposes an inexpensive, rapidly deployable cloud of autonomous drones, each coupled with a micro-cellular base station that deploys from a transportable deployment module. The goal is to temporarily restore communications for both first responders to communicate amongst themselves as well as for the rest of the impacted population

    Application of a Blockchain Enabled Model in Disaster Aids Supply Network Resilience

    Get PDF
    The disaster area is a dynamic environment. The bottleneck in distributing the supplies may be from the damaged infrastructure or the unavailability of accurate information about the required amounts. The success of the disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a reliable dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts. This study analyzes the application of blockchain technology on disaster management resilience. The influences of this most promising application on the disaster aid supply network resilience combined with the Internet of Things (IoT) and Dynamic Voltage Frequency Scaling (DVFS) algorithm are explored employing a network-based simulation. The theoretical analysis reveals an advancement in disaster-aids supply network strategies using smart contracts for collaborations. The simulation study indicates an enhance in resilience by improvement in collaboration and communication due to more time-efficient processing for disaster supply management. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation

    A Blockchain-Enabled Model to Enhance Disaster Aids Network Resilience

    Get PDF
    The disaster area is a true dynamic environment. Lack of accurate information from the affected area create several challenges in distributing the supplies. The success of a disaster response network is based on collaboration, coordination, sovereignty, and equality in relief distribution. Therefore, a trust-based dynamic communication system is required to facilitate the interactions, enhance the knowledge for the relief operation, prioritize, and coordinate the goods distribution. One of the promising innovative technologies is blockchain technology which enables transparent, secure, and real-time information exchange and automation through smart contracts in a distributed technological ecosystem. This study aims to analyze the application of blockchain technology on disaster management resilience. Blockchain technology, the Internet of Things (IoT), and Dynamic Voltage Frequency Scaling (DVFS) algorithm are integrated in a network-based simulation. The results indicate an advancement in disaster-aids network strategies using smart contracts for collaborations. From the investigations, insights have been derived for researchers in the field and the managers interested in practical implementation

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review

    Get PDF
    The role of digital technologies (DTs) in humanitarian supply chains (HSC) has become an increasingly researched topic in the operations literature. While numerous publications have dealt with this convergence, most studies have focused on examining the implementation of individual DTs within the HSC context, leaving relevant literature, to date, dispersed and fragmented. This study, through a systematic literature review of 110 articles on HSC published between 2015 and 2020, provides a unified overview of the current state-of-the-art DTs adopted in HSC operations. The literature review findings substantiate the growing significance of DTs within HSC, identifying their main objectives and application domains, as well as their deployment with respect to the different HSC phases (i.e., Mitigation, Preparedness, Response, and Recovery). Furthermore, the findings also offer insight into how participant organizations might configure a technological portfolio aimed at overcoming operational difficulties in HSC endeavours. This work is novel as it differs from the existing traditional perspective on the role of individual technologies on HSC research by reviewing multiple DTs within the HSC domain

    Strong as the Weakest Link: Medical Response to a Catastrophic Event

    Get PDF
    Natural disasters and acts of terrorism have placed a spotlight on the ability of health care providers to surge in response to catastrophic conditions. This paper reviews the status of efforts to develop the capacity and capabilities of the health care system to respond to disasters and other mass casualty events. Strategies for adapting routine medical practices and protocols to the demands posed by extraordinary circumstances and scarce resources are summarized. Existing federal roles, responsibilities, and assets relative to the contributions of state and local government and the private sector are described, including specific programmatic activities such as the Strategic National Stockpile, the National Disaster Medical System, and the Hospital Preparedness Program. Opportunities for federal policymakers seeking to strengthen and expedite preparations for medical disaster response are highlighted

    Guidelines for the Use of Unmanned Aerial Systems in Flood Emergency Response

    Get PDF
    There is increasing interest in using Unmanned Aircraft Systems (UAS) in flood risk management activities including in response to flood events. However, there is little evidence that they are used in a structured and strategic manner to best effect. An effective response to flooding is essential if lives are to be saved and suffering alleviated. This study evaluates how UAS can be used in the preparation for and response to flood emergencies and develops guidelines for their deployment before, during and after a flood event. A comprehensive literature review and interviews, with people with practical experience of flood risk management, compared the current organizational and operational structures for flood emergency response in both England and India, and developed a deployment analysis matrix of existing UAS applications. An online survey was carried out in England to assess how the technology could be further developed to meet flood emergency response needs. The deployment analysis matrix has the potential to be translated into an Indian context and other countries. Those organizations responsible for overseeing flood risk management activities including the response to flooding events will have to keep abreast of the rapid technological advances in UAS if they are to be used to best effect

    The Objectives and factors affecting Performance of last mile Relief Distribution in Post-Disaster operations: The case of India

    Get PDF
    © 2020 A and V Publications. All right reservedThe world has witnessed an increasing number of natural disasters in recent years affecting large populations. The logistical operations to deliver relief to these populations are complex requiring careful planning and execution especially during the Last Mile Relief Distribution (LMRD), the ultimate phase in these operations. LMRD is the phase where the disaster logistics chain directly connects with the affected communities and whose performance is affected by many factors. The aim of this paper is to evaluate the impact of relevant factors on LMRD performance in the context of India, the most affected country in the world by natural disasters. The research was conducted interviews with International NGOs and Indian government, national, and international NGOs involved in disaster relief operations in the country to determine the factors affecting LMRD operations. The qualitative phase findings identified coordination as the most significant factor affecting LMRD operations performance in India and established an outline, which will be used as a planner of LMRD before decision-making process in India. This research identifies coordination as a major factor of LMRD operations in India. Its impact is evaluated through the development of a conceptual model, which provided empirical evidence of the magnitude of LMRD performance improvement by adopting new coordination policies. The research provides suggestions for new ways on how to achieve better coordination and implement these successfully in Indian LMRD operations.Peer reviewe

    A MATHEMATICAL FRAMEWORK FOR OPTIMIZING DISASTER RELIEF LOGISTICS

    Get PDF
    In today's society that disasters seem to be striking all corners of the globe, the importance of emergency management is undeniable. Much human loss and unnecessary destruction of infrastructure can be avoided with better planning and foresight. When a disaster strikes, various aid organizations often face significant problems of transporting large amounts of many different commodities including food, clothing, medicine, medical supplies, machinery, and personnel from several points of origin to a number of destinations in the disaster areas. The transportation of supplies and relief personnel must be done quickly and efficiently to maximize the survival rate of the affected population. The goal of this research is to develop a comprehensive model that describes the integrated logistics operations in response to natural disasters at the operational level. The proposed mathematical model integrates three main components. First, it controls the flow of several relief commodities from sources through the supply chain until they are delivered to the hands of recipients. Second, it considers a large-scale unconventional vehicle routing problem with mixed pickup and delivery schedules for multiple transportation modes. And third, following FEMA's complex logistics structure, a special facility location problem is considered that involves four layers of temporary facilities at the federal and state levels. Such integrated model provides the opportunity for a centralized operation plan that can effectively eliminate delays and assign the limited resources in a way that is optimal for the entire system. The proposed model is a large-scale mixed integer program. To solve the model, two sets of heuristic algorithms are proposed. For solving the multi-echelon facility location problem, four heuristic approaches are proposed. Also four heuristic algorithms are proposed to solve the general integer vehicle routing problem. Overall, the proposed heuristics could efficiently find optimal or near optimal solution in minutes of CPU time where solving the same problems with a commercial solver needed hours of computation time. Numerical case studies and extensive sensitivity analysis are conducted to evaluate the properties of the model and solution algorithms. The numerical analysis indicated the capabilities of the model to handle large-scale relief operations with adequate details. Solution algorithms were tested for several random generated cases and showed robustness in solution quality as well as computation time
    corecore