7,654 research outputs found

    Target coverage through distributed clustering in directional sensor networks

    Full text link
    Maximum target coverage with minimum number of sensor nodes, known as an MCMS problem, is an important problem in directional sensor networks (DSNs). For guaranteed coverage and event reporting, the underlying mechanism must ensure that all targets are covered by the sensors and the resulting network is connected. Existing solutions allow individual sensor nodes to determine the sensing direction for maximum target coverage which produces sensing coverage redundancy and much overhead. Gathering nodes into clusters might provide a better solution to this problem. In this paper, we have designed distributed clustering and target coverage algorithms to address the problem in an energy-efficient way. To the best of our knowledge, this is the first work that exploits cluster heads to determine the active sensing nodes and their directions for solving target coverage problems in DSNs. Our extensive simulation study shows that our system outperforms a number of state-of-the-art approaches

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Energy Efficient Node Deployment in Wireless Ad-hoc Sensor Networks

    Full text link
    We study a wireless ad-hoc sensor network (WASN) where NN sensors gather data from the surrounding environment and transmit their sensed information to MM fusion centers (FCs) via multi-hop wireless communications. This node deployment problem is formulated as an optimization problem to make a trade-off between the sensing uncertainty and energy consumption of the network. Our primary goal is to find an optimal deployment of sensors and FCs to minimize a Lagrange combination of the sensing uncertainty and energy consumption. To support arbitrary routing protocols in WASNs, the routing-dependent necessary conditions for the optimal deployment are explored. Based on these necessary conditions, we propose a routing-aware Lloyd algorithm to optimize node deployment. Simulation results show that, on average, the proposed algorithm outperforms the existing deployment algorithms.Comment: 7 pages, 6 figure

    Context-aware Cluster Based Device-to-Device Communication to Serve Machine Type Communications

    Full text link
    Billions of Machine Type Communication (MTC) devices are foreseen to be deployed in next ten years and therefore potentially open a new market for next generation wireless network. However, MTC applications have different characteristics and requirements compared with the services provided by legacy cellular networks. For instance, an MTC device sporadically requires to transmit a small data packet containing information generated by sensors. At the same time, due to the massive deployment of MTC devices, it is inefficient to charge their batteries manually and thus a long battery life is required for MTC devices. In this sense, legacy networks designed to serve human-driven traffics in real time can not support MTC efficiently. In order to improve the availability and battery life of MTC devices, context-aware device-to-device (D2D) communication is exploited in this paper. By applying D2D communication, some MTC users can serve as relays for other MTC users who experience bad channel conditions. Moreover, signaling schemes are also designed to enable the collection of context information and support the proposed D2D communication scheme. Last but not least, a system level simulator is implemented to evaluate the system performance of the proposed technologies and a large performance gain is shown by the numerical results

    A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds

    Full text link
    Motivated by the benefits of small world networks, we propose a self-organization framework for wireless ad hoc networks. We investigate the use of directional beamforming for creating long-range short cuts between nodes. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Our results show that, while significant path length reduction is achievable, this is accompanied by the problem of asymmetric paths between nodes. Subsequently, we propose a distributed algorithm for small world creation that achieves path length reduction while maintaining connectivity. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. We show, using simulations, that this leads to significant reduction in path length while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog
    • …
    corecore