192,549 research outputs found

    Hybrid Particle and Kalman Filtering for Pupil Tracking in Active IR Illumination Gaze Tracking System

    Get PDF
    A novel pupil tracking method is proposed by combining particle filtering and Kalman filtering for the fast and accurate detection of pupil target in an active infrared source gaze tracking system. Firstly, we utilize particle filtering to track pupil in synthesis triple-channel color map (STCCM) for the fast detection and develop a comprehensive pupil motion model to conduct and analyze the randomness of pupil motion. Moreover, we built a pupil observational model based on the similarity measurement with generated histogram to improve the credibility of particle weights. Particle filtering can detect pupil region in adjacent frames rapidly. Secondly, we adopted Kalman filtering to estimate the pupil parameters more precisely. The state transitional equation of the Kalman filtering is determined by the particle filtering estimation, and the observation of the Kalman filtering is dependent on the detected pupil parameters in the corresponding region of difference images estimated by particle filtering. Tracking results of Kalman filtering are the final pupil target parameters. Experimental results demonstrated the effectiveness and feasibility of this method.Published versio

    Multi-Bernoulli Sensor-Control via Minimization of Expected Estimation Errors

    Full text link
    This paper presents a sensor-control method for choosing the best next state of the sensor(s), that provide(s) accurate estimation results in a multi-target tracking application. The proposed solution is formulated for a multi-Bernoulli filter and works via minimization of a new estimation error-based cost function. Simulation results demonstrate that the proposed method can outperform the state-of-the-art methods in terms of computation time and robustness to clutter while delivering similar accuracy

    Learning to Divide and Conquer for Online Multi-Target Tracking

    Get PDF
    Online Multiple Target Tracking (MTT) is often addressed within the tracking-by-detection paradigm. Detections are previously extracted independently in each frame and then objects trajectories are built by maximizing specifically designed coherence functions. Nevertheless, ambiguities arise in presence of occlusions or detection errors. In this paper we claim that the ambiguities in tracking could be solved by a selective use of the features, by working with more reliable features if possible and exploiting a deeper representation of the target only if necessary. To this end, we propose an online divide and conquer tracker for static camera scenes, which partitions the assignment problem in local subproblems and solves them by selectively choosing and combining the best features. The complete framework is cast as a structural learning task that unifies these phases and learns tracker parameters from examples. Experiments on two different datasets highlights a significant improvement of tracking performances (MOTA +10%) over the state of the art

    Vision-based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

    Get PDF
    The paper focuses on the problem of vision-based obstacle detection and tracking for unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular image sequences is developed by effectively integrating the object detection and tracking into a dynamic Kalman model. At the detection stage, the object of interest is automatically detected and localized from a saliency map computed via the image background connectivity cue at each frame; at the tracking stage, a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a local detector incorporating the saliency map and the temporal information between two consecutive frames. Compared to existing methods, the proposed approach does not require any manual initialization for tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness and superior performance of the proposed approach.Comment: 8 pages, 7 figure
    • …
    corecore