1,131 research outputs found

    Fixed points for multi-class queues

    Full text link
    Burke's theorem can be seen as a fixed-point result for an exponential single-server queue; when the arrival process is Poisson, the departure process has the same distribution as the arrival process. We consider extensions of this result to multi-type queues, in which different types of customer have different levels of priority. We work with a model of a queueing server which includes discrete-time and continuous-time M/M/1 queues as well as queues with exponential or geometric service batches occurring in discrete time or at points of a Poisson process. The fixed-point results are proved using interchangeability properties for queues in tandem, which have previously been established for one-type M/M/1 systems. Some of the fixed-point results have previously been derived as a consequence of the construction of stationary distributions for multi-type interacting particle systems, and we explain the links between the two frameworks. The fixed points have interesting "clustering" properties for lower-priority customers. An extreme case is an example of a Brownian queue, in which lower-priority work only occurs at a set of times of measure 0 (and corresponds to a local time process for the queue-length process of higher priority work).Comment: 25 page

    Lattice path counting and the theory of queues

    Get PDF
    In this paper we will show how recent advances in the combinatorics of lattice paths can be applied to solve interesting and nontrivial problems in the theory of queues. The problems we discuss range from classical ones like M^a/M^b/1 systems to open tandem systems with and without global blocking and to queueing models that are related to random walks in a quarter plane like the Flatto-Hahn model or systems with preemptive priorities. (author´s abstract)Series: Research Report Series / Department of Statistics and Mathematic

    Waiting times in queueing networks with a single shared server

    Full text link
    We study a queueing network with a single shared server that serves the queues in a cyclic order. External customers arrive at the queues according to independent Poisson processes. After completing service, a customer either leaves the system or is routed to another queue. This model is very generic and finds many applications in computer systems, communication networks, manufacturing systems, and robotics. Special cases of the introduced network include well-known polling models, tandem queues, systems with a waiting room, multi-stage models with parallel queues, and many others. A complicating factor of this model is that the internally rerouted customers do not arrive at the various queues according to a Poisson process, causing standard techniques to find waiting-time distributions to fail. In this paper we develop a new method to obtain exact expressions for the Laplace-Stieltjes transforms of the steady-state waiting-time distributions. This method can be applied to a wide variety of models which lacked an analysis of the waiting-time distribution until now

    Queues and risk models with simultaneous arrivals

    Get PDF
    We focus on a particular connection between queueing and risk models in a multi-dimensional setting. We first consider the joint workload process in a queueing model with parallel queues and simultaneous arrivals at the queues. For the case that the service times are ordered (from largest in the first queue to smallest in the last queue) we obtain the Laplace-Stieltjes transform of the joint stationary workload distribution. Using a multivariate duality argument between queueing and risk models, this also gives the Laplace transform of the survival probability of all books in a multivariate risk model with simultaneous claim arrivals and the same ordering between claim sizes. Other features of the paper include a stochastic decomposition result for the workload vector, and an outline how the two-dimensional risk model with a general two-dimensional claim size distribution (hence without ordering of claim sizes) is related to a known Riemann boundary value problem

    Separation of timescales in a two-layered network

    Full text link
    We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the second layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012

    Stationary distributions of the multi-type ASEP

    Full text link
    We give a recursive construction of the stationary distribution of multi-type asymmetric simple exclusion processes on a finite ring or on the infinite line ZZ. The construction can be interpreted in terms of "multi-line diagrams" or systems of queues in tandem. Let qq be the asymmetry parameter of the system. The queueing construction generalises the one previously known for the totally asymmetric (q=0q=0) case, by introducing queues in which each potential service is unused with probability qkq^k when the queue-length is kk. The analysis is based on the matrix product representation of Prolhac, Evans and Mallick. Consequences of the construction include: a simple method for sampling exactly from the stationary distribution for the system on a ring; results on common denominators of the stationary probabilities, expressed as rational functions of qq with non-negative integer coefficients; and probabilistic descriptions of "convoy formation" phenomena in large systems.Comment: 54 pages, 4 figure

    Alternative proof and interpretations for a recent state-dependent importance sampling scheme

    Get PDF
    Recently, a state-dependent change of measure for simulating overflows in the two-node tandem queue was proposed by Dupuis et al. (Ann. Appl. Probab. 17(4):1306–1346, 2007), together with a proof of its asymptotic optimality. In the present paper, we present an alternative, shorter and simpler proof. As a side result, we obtain interpretations for several of the quantities involved in the change of measure in terms of likelihood ratios

    Stationary distributions of multi-type totally asymmetric exclusion processes

    Full text link
    We consider totally asymmetric simple exclusion processes with n types of particle and holes (nn-TASEPs) on Z\mathbb {Z} and on the cycle ZN\mathbb {Z}_N. Angel recently gave an elegant construction of the stationary measures for the 2-TASEP, based on a pair of independent product measures. We show that Angel's construction can be interpreted in terms of the operation of a discrete-time M/M/1M/M/1 queueing server; the two product measures correspond to the arrival and service processes of the queue. We extend this construction to represent the stationary measures of an n-TASEP in terms of a system of queues in tandem. The proof of stationarity involves a system of n 1-TASEPs, whose evolutions are coupled but whose distributions at any fixed time are independent. Using the queueing representation, we give quantitative results for stationary probabilities of states of the n-TASEP on ZN\mathbb {Z}_N, and simple proofs of various independence and regeneration properties for systems on Z\mathbb {Z}.Comment: Published at http://dx.doi.org/10.1214/009117906000000944 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Detecting Markov Chain Instability: A Monte Carlo Approach

    Get PDF
    We devise a Monte Carlo based method for detecting whether a non-negative Markov chain is stable for a given set of parameter values. More precisely, for a given subset of the parameter space, we develop an algorithm that is capable of deciding whether the set has a subset of positive Lebesgue measure for which the Markov chain is unstable. The approach is based on a variant of simulated annealing, and consequently only mild assumptions are needed to obtain performance guarantees. The theoretical underpinnings of our algorithm are based on a result stating that the stability of a set of parameters can be phrased in terms of the stability of a single Markov chain that searches the set for unstable parameters. Our framework leads to a procedure that is capable of performing statistically rigorous tests for instability, which has been extensively tested using several examples of standard and non-standard queueing networks
    corecore