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Abstract

We focus on a particular connection between queueing and risk models in a multidimen-
sional setting. We first consider the joint workload process in a queueing model with
parallel queues and simultaneous arrivals at the queues. For the case that the service
times are ordered (from largest in the first queue to smallest in the last queue), we obtain
the Laplace–Stieltjes transform of the joint stationary workload distribution. Using a
multivariate duality argument between queueing and risk models, this also gives the
Laplace transform of the survival probability of all books in a multivariate risk model
with simultaneous claim arrivals and the same ordering between claim sizes. Other
features of the paper include a stochastic decomposition result for the workload vector,
and an outline of how the two-dimensional risk model with a general two-dimensional
claim size distribution (hence, without ordering of claim sizes) is related to a known
Riemann boundary-value problem.
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1. Introduction

There are several connections between queueing and risk models. A classical result is that
the ruin probability in the Cramér–Lundberg risk model, in which the arrival process of claims
is a compound Poisson process, is related to the workload (or waiting time) in an M/G/1 queue
with the same compound Poisson input. More precisely, denoting by (Rt )t≥0 the surplus
process in the Cramér–Lundberg risk model, by τ the time of ruin of this process, and by
(Vt )t≥0 the workload process in the corresponding M/G/1 queue, we have P(τ ≤ t | R0 = u)

= P(Vt > u | V0 = 0); in particular, the probability of ruin ever occurring when starting at u
equals the probability that the steady-state workload exceeds u. See, e.g. the nice geometric
duality argument on page 46 of [1], or [23].

Other ruin-related performance measures have a counterpart in queueing theory. By inter-
preting the interarrival times of the claims as service times of the corresponding queue and the
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claim sizes as interarrival times of the queue, the standard Cramér–Lundberg model is translated
into a G/M/1 queue. The time to ruin in the Cramér–Lundberg model is now related to a busy
period of the corresponding queue, the deficit at ruin to an idle period, and the surplus just
before ruin to the sojourn time of the last customer in a busy period (see [16] and [19]).

In this paper our focus is on a connection between queueing and risk models in a multidi-
mensional setting. In particular, we look at the joint workload process in a queueing model
with parallel queues and simultaneous arrivals at the queues. Under the condition that, with
probability 1, the service times of the customers arriving at the same time at the different queues
are ordered (i.e. the customer in queue 1 has the largest service time, the customer in queue 2 the
second largest service time, and so on), we are able to find the Laplace–Stieltjes transform of
the joint stationary workload distribution in the different queues. Using a multivariate duality
argument between queueing and risk models, this immediately gives the Laplace transform of
the survival (nonruin) probabilities in a multivariate risk model with simultaneous claim arrivals
(and the same ordering property for the claim sizes of the simultaneous claims at the different
books in the model).

Queueing models with parallel queues and simultaneous arrivals are also often called fork-
join queues. These models have many applications in computer, communication, and produc-
tion systems in which jobs are split among a number of different processors, communication
channels, or machines. Clearly, the queues in these models are dependent due to the simultane-
ous arrivals. In general, this makes an exact analysis of the model very hard. Only in the case
of two queues are exact results available (see, e.g. [4], [10], [12], [15], and [25]). We will come
back to some of these exact results in Section 6 of the paper, where we give a partial account
of these results (for a more detailed discussion of these results, see the extended version of this
paper [7]). For the model with more than two servers, no exact analytical results are available
in the literature. In this case, bounds and approximations for several performance measures
have been developed; see, e.g. [5], [21], and [22].

Multivariate risk models with simultaneous claim arrivals have several applications in the
area of ruin theory. One example is provided by reinsurance models in which, whenever a
claim arrives, several insurance companies pay a part of the claim. Another example would
be a large insurance company with multiple lines of business, where correlated claims arrive
at the various business lines. Albeit in a different area of risk management, analysis of the
dependence between the stochastic asset processes of several counter parties is also one of the
most challenging aspects in the field of credit risk. Specifically, in a two-dimensional setting
one has to study the joint asset process of an obligor and a guarantor in credit default swaps.

Avram et al. [2], [3] studied the joint ruin problem for the special case of two insurance
companies that divide between them both claims and premia in some specific proportions. In
particular, they derived the double Laplace transform with respect to the two initial reserves
of the survival probabilities of the two companies. Proportional claims are a special case of
our ordered claims, and we show in Section 4 that their survival result is indeed a special case
of (7). One of the key observations in [2] and [3] is that, due to the fact that the companies
divide the claims in some specific proportions, the two-dimensional ruin problem may be
viewed as a one-dimensional crossing problem over a piecewise-linear barrier. Badescu et
al. [6] extended the two-dimensional model of Avram et al. [2], [3] by allowing, next to the
arrivals of claims for which the two insurers divide the claim in some specific proportions, extra
arrivals of claims which are fully paid by one of the insurers (e.g. insurer 1). They showed that,
under some conditions that also hold in this model, the previously mentioned reduction to a
one-dimensional problem still holds. However, in [6] the authors did not consider the double



814 E. S. BADILA ET AL.

Laplace transform with respect to the two initial reserves of the survival probabilities of the
two companies (their main focus was on the Laplace transform of the time until ruin of at least
one insurer).

The remainder of the paper is organized as follows. In Section 2 we present our model
in detail and we provide the multivariate duality argument. This duality argument allows a
translation between results for the queueing model and results for the multivariate risk model.
Section 3 is dedicated to the analysis of the two-dimensional queueing model with ordered
service times. After introducing the assumptions, we derive the Laplace–Stieltjes transform
of the joint stationary workloads in the two queues and present a decomposition theorem for
the stationary workload in the two queues. In Section 5 we extend the results of Section 3 to
the K-dimensional queueing model. Section 4 is dedicated to relations to other models. We
present connections with tandem and priority queues, but also with a reinsurance problem with
proportional claim sizes. In Section 6 we discuss the case of a general two-dimensional service
time (or claim size) distribution. We indicate that the two-dimensional workload problem has
been solved in the queueing literature. The solution is very complicated; our ordered service
times case is a degenerate case, but a case which has the advantage of a much more explicit
solution which offers more probabilistic insight—and a case that can be generalized to higher
dimensions. Finally, in Section 7 we outline possible further research directions.

Among the main contributions of our paper, we mention an explicit result for the transform of
the joint workload (and of the joint survival probability) and its extension to theK-dimensional
model. In addition, we mention the workload decomposition result. It seems to be new in this
setting, although similar results—under the assumption of independent inputs—were obtained
for parallel queues (cf. [18]). From a more abstract perspective, another contribution of our
paper is that it strengthens the links between queueing and risk models, pointing out that certain
results and methods in the literature (and in the present paper) for queues with simultaneous
arrivals are of immediate use in the risk setting, and vice versa.

2. Multivariate duality

We consider a K-dimensional risk process in which claims arrive simultaneously in the K
branches, according to a Poisson process with rate λ. The claim sizes in the K books are
independent, identically distributed random vectors (B(1)n , . . . , B

(K)
n ), n ≥ 1. In the sequel we

denote by (B(1), . . . , B(K)) a random vector with the same distribution as (B(1)1 , . . . , B
(K)
1 ).

For the nth arriving claim vector, denote by An the time elapsed since the arrival of
the previous claim vector, so that the An are independent and have an identical exponential
distribution with parameter λ.

Let R(i)t , i = 1, . . . , K , be K risk reserve processes with initial capitals ui , premium rates
c(i), and the same arrival instants σn, n ≥ 1. We have An = σn − σn−1 and σ0 = 0 (no delay).
Then

R
(i)
t = ui +

n(t)∑
j=1

(c(i)Aj − B
(i)
j )+ c(i)(t − σn(t)), (1)

where n(t) is the number of arrivals before t . Let τ (i)(ui) = inf{t > 0 : R(i)t < 0} be the times
to ruin.

In connection with the ruin process, we considerK parallel M/G/1 queues with simultaneous
(coupled) arrivals and correlated service requirements. As in the ruin setting, the An are the
interarrival times of customers in the K queues and the vector (B(1), . . . , B(K)) denotes the
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generic service requirements. The speed of server i is denoted by c(i), meaning that server i
handles c(i) units of work per time unit, i = 1, . . . , K .

Furthermore, we denote by ρi := λE(B(i)) the load of queue i, i = 1, . . . , K , and we
assume that ρi < c(i), to ensure that all queues can handle the offered traffic. These conditions
imply positive safety loading in the ruin setting.

From the queueing perspective, let (V (1)t , . . . , V
(K)
t ) be the workload vector at time t in the

system or, if we consider the nth arrival epoch, this is the workload vector (V (1)n , . . . , V
(K)
n )

seen by the customers of the nth batch arrival. Note that V (i)n = c(i)W
(i)
n , where W(i)

n is the
waiting time of the nth arrival in queue i. Under the stability conditions above, the vectors
(V

(1)
t , . . . , V

(K)
t ) and (V (1)n , . . . , V

(K)
n ) converge in distribution to the steady-state joint work-

load at arbitrary epochs and at arrival epochs, respectively. Owing to the PASTA property,
these vectors are equal. Similarly, the vector (W(1)

n , . . . ,W
(K)
n ) converges in distribution

to the steady-state waiting time. The Laplace–Stieltjes transform (LST) of the steady-state
workload vector is given by

ψ(s1, s2, . . . , sK) := E(exp[−s1V (1) − s2V
(2) − · · · − sKV

(K)]).
For the multidimensional ruin process defined in (1), consider a dual workload process with

V
(i)
N , i = 1, . . . , K , the workload seen upon arrival by the N th customer in K initially empty

queues with the time reverted arrival process (the arrival epochs are the same for all the systems):

σ ∗
n = σN−n+1, (A∗

n = AN−n+1), n = 1, . . . , N;
the service time of customer n at queue i is given by B∗(i)

n = B
(i)
N−n+1, n = 1, . . . , N , (time

reverted service time) (cf. [1]).
The following lemma shows that the well-known duality result (cf. [1, p. 46]) between the

Cramér–Lundberg model and the M/G/1 queue can be extended to the multivariate risk model
and the queueing model with simultaneous arrivals. Here the connection is between the various
possibilities to be ruined (i.e. we may have ruin in all books or precisely in one, at least in one,
etc.). The results below are presented for the case K = 2, but can be directly extended to the
general case.

Lemma 1. The following identities hold.

(a) {V (1)N > u1 ∧ V (2)N > u2} = {τ (1)(u1) ≤ σN ∧ τ (2)(u2) ≤ σN }.
(b) {V (1)N ≤ u1 ∧ V (2)N ≤ u2} = {τ (1)(u1) > σN ∧ τ (2)(u2) > σN }.
(c) {V (1)N > u1 ∧ V (2)N ≤ u2} = {τ (1)(u1) ≤ σN ∧ τ (2)(u2) > σN }.
(d) {V (1)N ≤ u1 ∧ V (2)N > u2} = {τ (1)(u1) > σN ∧ τ (2)(u2) ≤ σN }.

The above relations are pathwise identities.

Proof. The following identities hold for the cylinder sets:

{V (i)N > ui} = {τ (i)(ui) ≤ σN }, i = 1, 2.

This follows directly from [1, p. 46] for the one-dimensional problem, and is a special case of
the duality in [24].

If we intersect the above identities, we obtain (a). Identity (b) follows by intersecting their
complements, and (c) and (d) by subtracting (b) and (a), respectively, from the complements
of the above cylinder sets. This concludes the proof.
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If we let N → ∞ in Lemma 1(b), we obtain the infinite horizon joint survival probability

lim
N→∞ P(V

(1)
N ≤ u1 ∧ V (2)N ≤ u2) = P(τ (1)(u1) = ∞ ∧ τ (2)(u2) = ∞). (2)

Denote the right-hand side by ξ(u1, u2). This is the joint survival function for initial capital
(u1, u2). By the PASTA property, we can replace the steady-state workload at arrival epochs
with the steady-state workload at arbitrary epochs in (2).

Let

ξ∗(s, t) :=
∫

e−sx1−tx2ξ(x1, x2) dx1 dx2

be the Laplace transform (LT) of the joint survival function. Via (2), this is also the LT of
the cumulative distribution function (CDF) of the joint workload in steady state. By a simple
integration by parts, we have the following relation with the LST of the workload:

ξ∗(s, t) = 1

st
ψ(s, t). (3)

3. The analysis of the two-dimensional problem

In this section we derive the transform of the joint steady-state workload process of the
two-dimensional queueing model with simultaneous arrivals, as introduced in Section 2. We
also present a probabilistic interpretation of the quantities involved in the formula of the joint
workload. The results are of immediate relevance for the corresponding insurance problem,
via the duality outlined in the previous section.

Before we start with the analysis, we make the following simplifying assumption.

Assumption 1. All the premium rates in the risk model, and the corresponding service speeds
in the queueing model, are 1, viz., c(1) = · · · = c(K) = 1.

The following observation shows that this assumption is not restrictive. If we divide all
terms on the right-hand side of (1) by c(i), we arrive at a new risk model with initial capital
ui/c

(i), claim size B(i)/c(i), and unit premium rates. Similarly, in the corresponding queueing
model the service times at queue i are also divided by c(i) and the service speeds are equal
to 1. This will not change the nth waiting time W(i)

n at queue i, but the workload V (i)n at the
nth arrival epoch is divided by c(i). Also, the times to ruin are preserved; hence, the identities
in Lemma 1 from the previous section remain unchanged.

The LST of the joint service time/claim size vector is denoted by

φ(s, t) := E(e−sB(1)−tB(2) ).

Our key assumption is the following.

Assumption 2. It holds that P(B(1) ≥ B(2)) = 1. In view of the above discussion, in case the
speeds are c(i), our assumption would be P(B(1)/c(1) ≥ B(2)/c(2)) = 1.

Remark 1. This model allows for a dedicated Poisson arrival stream into queue 1. Merging
this separate arrival process with the simultaneous arrival process at queue 1, the distribution
of B(2) will have an atom in 0, which is the probability that a dedicated Poisson arrival happens
instead of a simultaneous arrival (see [6] for a reinsurance model with both dedicated and
simultaneous arrivals).
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We are interested in the joint stationary distribution of the amount of work in the two queues:

ψ(s, t) := E(e−sV (1)−tV (2) ).
This can be obtained in the following way. Consider the amount of work in queue i just
before the arrival of customer n. We have the following recursion for the random variables
(V

(1)
n , V

(2)
n ), n = 1, 2, . . .:

(V
(1)
n+1, V

(2)
n+1) = (max(V (1)n + B(1)n − An, 0),max(V (2)n + B(2)n − An, 0)).

For the LST,
ψn(s, t) = E(exp[−sV (1)n − tV (2)n ]), n = 1, 2, . . . ,

the recursion gives, after straightforward calculations,

ψn+1(s, t) = λ

λ− s − t
(φ(s, t)ψn(s, t)− φ(s, λ− s)ψn(s, λ− s))

+ λ

λ− s
(φ(s, λ− s)ψn(s, λ− s)− φ(λ, 0)ψn(λ, 0))

+ φ(λ, 0)ψn(λ, 0).

Under the stability condition ρ1 < 1, ψ(s, t) := limn→∞ ψn(s, t) exists and(
1 − λφ(s, t)

λ− s − t

)
ψ(s, t) =

(
λ

λ− s
− λ

λ− s − t

)
φ(s, λ− s)ψ(s, λ− s)

+
(

1 − λ

λ− s

)
φ(λ, 0)ψ(λ, 0). (4)

If we let A denote a generic interarrival time, then, owing to the PASTA property,

φ(λ, 0)ψ(λ, 0) = P(V (1) + B(1) ≤ A) = P(V (1) = 0) = 1 − ρ1. (5)

This is the probability that queue 1 is empty at an arbitrary time instant.
Let us consider the regularity domains of ψ(s, t) and φ(s, t). We note that, because of the

dependence P(B(1) ≥ B(2)) = 1, we can rewrite the transform of the joint service times as

φ(s, t) = Ee−s(B(1)−B(2))−(s+t)B(2) =: φ̃(s, s + t),

and this function is always regular in Re s > 0 and Re (s + t) > 0. If we consider (B(1), B(2))
subject to B(1) ≥ B(2) almost surely (a.s.), φ(s, t) may not be regular beyond this domain.
More precisely, if B(2) has a heavy-tailed distribution, this implies that B(1) is also heavy
tailed because of the dependence structure. In this case φ(s, t) cannot be extended beyond
Re s ≥ 0 and Re (s + t) ≥ 0. Similar considerations hold for ψ(s, t) because we must also
have P(V (1) ≥ V (2)) = 1.

It can be shown using Rouché’s theorem that, for every s with Re s > 0, there exists a unique
t = t (s) with Re t (s) > Re (−s) that satisfies the identity λφ(s, t) = λ − (s + t). Moreover,
the function s → t (s) (which is in this case well defined) is analytic in Re s > 0 (for a proof
of this, see [7]). Hence, the pair (s, t (s)) is a zero of (1 − λφ(s, t)/(λ− s − t)) in (4), which
is in the regularity domain of ψ(s, t). Then the right-hand side of (4) is also 0, i.e.

λt (s)φ(s, λ− s)ψ(s, λ− s) = −s(λ− t (s)− s)φ(λ, 0)ψ(λ, 0). (6)

If we substitute this in (4) and use (5), we obtain

ψ(s, t) = (1 − ρ1)
s

s + t − λ(1 − φ(s, t))

t (s)− t

t (s)
. (7)
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3.1. The interpretation of the Rouché zero t (s)

Assume that a customer that starts a busy period BP(2) in queue 2 demands work x in queue 2
and work x+ y in queue 1. During the service time of this customer in the second queue, there
are Poisson(λx) arriving customers, each generating an independent and identically distributed
busy subperiod with the same distribution as BP(2) in queue 2. So, if we denote with U the
extra work in the first queue, at the end of a busy period in the second queue, and with U∗(s)
its LST, we have the identity

U∗(s) =
∫ ∞

x=0

∫ ∞

y=0
e−sy

∞∑
k=0

(λx)k

k! e−λx[U∗(s)]k dP(B(1) − B(2) ≤ y, B(2) ≤ x).

The powers ofU∗(s) correspond to the extra work contributions at the end of the busy subperiods
started during the service time of the first customer in the busy period BP(2). We can rewrite
the above identity as

U∗(s) = φ̃(s, λ[1 − U∗(s)]) = φ(s, λ[1 − U∗(s)] − s). (8)

Comparing this with the equation satisfied by t (s), in terms of φ̃(s, s + t), we have

λφ̃(s, s + t (s)) = λ− (s + t (s)), λφ̃(s, λ[1 − U∗(s)]) = λU∗(s).

We may assume without loss of generality that P(B(1) > B(2)) > 0; otherwise, the two
queues are a.s. identical, which is not interesting. Then it follows that the real part of λ(1 −
U∗(s)) is positive, and we must have s + t (s) = λ(1 − U∗(s)) because t (s) is unique in the
region Re (s + t) > 0. We have thus proved the following result.

Proposition 1. The relation between t (s) and the transform of the extra workload in queue 1
at the end of a busy period in the shortest queue is

λU∗(s) = λ− (s + t (s)). (9)

The transform of the joint workload in the two systems becomes

ψ(s, t) = (1 − ρ1)
s + t − λ(1 − U∗(s))
s + t − λ(1 − φ(s, t))

s

s − λ(1 − U∗(s))
.

3.2. The workload decomposition

Based on Proposition 1, we show that the steady-state workload decomposes into an inde-
pendent sum of a modified workload and an additional term, which represents the steady-state
workload in a classical M/G/1 queue.

We start the joint workload process and let it run until the end of each busy period in the
queue with the smallest workload. At this random time instant, we remove the extra content in
queue 1, which has the largest workload of the two. Let us denote this modified joint workload
process as (Ṽ (1), V (2)). Then at the arrival instants of customers in the two queues, the following
recurrence relation holds:

(Ṽ
(1)
n+1, V

(2)
n+1) =

{
(Ṽ

(1)
n + B

(1)
n − An, V

(2)
n + B

(2)
n − An) if An < V

(2)
n + B

(2)
n ,

(0, 0) if An ≥ V
(2)
n + B

(2)
n .

Note that, marginally, the shortest queue evolves unchanged.
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If we have ergodicity then in steady state the above recurrence becomes

(Ṽ (1), V (2))
d=

{
(Ṽ (1) + B(1) − A,V (2) + B(2) − A) if A < V (2) + B(2),

(0, 0) if A ≥ V (2) + B(2).

Here and in the following ‘
d=’ denotes equality in distribution. In terms of LSTs, we obtain the

following functional equation for ψ̃(s, t) := Ee−sṼ (1)−tV (2) :(
1 − λφ(s, t)

λ− s − t

)
ψ̃(s, t) = (1 − ρ2)− λ

λ− s − t
ψ̃(s, λ− s)φ(s, λ− s).

Here 1 − ρ2 = P(V (2) = 0).
Now follows a similar analysis as for ψ(s, t). We already know from the Rouché problem

that t (s) is a zero of (1 − λφ(s, t)/(λ− s− t)). We also have Ṽ (1) ≥ V (2) a.s. (even if we take
out the extra workload at the largest queue at the end of each busy period, Ṽ (1) is still at least
as large as V (2)); therefore, (s, t (s)) is in the regularity domain of ψ̃(s, t) and so, at the point
(s, t (s)), the right-hand side of the above identity is equal to 0:

ψ̃(s, λ− s)φ(s, λ− s) = (1 − ρ2)
λ− s − t (s)

λ
.

Substituting this back into the original identity yields

ψ̃(s, t) = (1 − ρ2)
s + t − λ(1 − φ(s, t (s)))

s + t − λ(1 − φ(s, t))
. (10)

This is a two-dimensional Pollaczek–Khinchine type of representation. From an analytic point
of view, the role of the numerator is to cancel the unique pole of the denominator in the region
Re (s + t) > 0.

Substitute t (s) from Proposition 1 and ψ̃ from (10) into (7):

ψ(s, t) = 1 − ρ1

1 − ρ2

s

s − λ[1 − U∗(s)] ψ̃(s, t). (11)

We can now state the main result.

Theorem 1. (Work decomposition.) In steady state, we have the following representation of
the joint workload at the two queues as an independent sum:

(V (1), V (2))
d= (Ṽ (1), V (2))+ (V (1),1, 0).

Here V (1),1 is the workload in an independent, virtual M/G/1 queue with arrival rate λ and
service requirements distributed as U , the extra workload at the end of a busy period BP(2) in
the shortest queue.

Proof. It suffices to note that the factor

1 − ρ1

1 − ρ2

s

s − λ[1 − U∗(s)] = Ee−sV (1),1

in (11) is the Pollaczek–Khinchine formula for the transform of the workload in the virtual
M/G/1 queue with service time distribution U . This virtual queue is obtained by contracting
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the busy periods in the initial shortest queue, so that an arrival in the virtual queue happens at
the end of this busy period and the interarrival time is then the idle period in the initial queue,
and so is exponentially distributed.

To see that indeed (1 − ρ1)/(1 − ρ2) is the atom of V (1),1 at 0, differentiate the identity for
U∗(s) in (8):

E(U) = − d

ds
φ(s, λ(1 − U∗(s)− s))

∣∣∣∣
s=0

= E(B(1) − B(2))+ λEB(2)E(U);

so 1 − λE(U) = (1 − ρ1)/(1 − ρ2).

4. Relation with other models

In this section we point out how the results of the previous section are related to results for a
risk model with proportional reinsurance, a particular tandem fluid model and with a particular
priority queue. We start by showing that (7) generalizes a result obtained in [2] for the risk
setting.

4.1. The case of proportional reinsurance

In [2] the joint reserve process (R(1), R(2)) is of the form R(i)(t) = ui + c(i)t/δi − S(t).
Here S(t) is a common compound Poisson input process with generic claim sizes σ , and c(i)

are the premium rates. The claims are being divided in fixed proportions δi .
To bring this closer to our setting in Section 3, normalize the income rates, i.e. we consider

(R(1)/p1, R
(2)/p2) with pi = c(i)/δi . The assumption in [2] is that p1 > p2, which means

that, in our notation, the claim sizes areB(1) := σ/p1 < σ/p2 =: B(2). Note that the inequality
between the B(i) is reversed here (which means that the role of the arguments in our transforms
is interchanged, especially the Rouché zero).

Let us recall the main formula in [2, Formula (23)]:

ψ∗R(1),R(2) (p, q) = κ2(0+)′
p(κ1(p + q)− q(p1 − p2))

q + p − q+(q(p1 − p2))

q − q+(q(p1 − p2))
. (12)

The relation between the ruin times of (R(1), R(2)) and (R(1)/p1, R
(2)/p2) is

τR(1)/p1,R(2)/p2
(u1, u2) = τR(1),R(2) (p1u1, p2u2).

Hence, the relation to the LT coordinates used in (3) is s = p1p and t = p2q. From this, the
relation between the LT of the survival functions becomes, after a change of variables,

ψ∗R(1)/p1,R(2)/p2
(s, t) = 1

p1p2
ψ∗R(1),R(2) (p, q). (13)

• κi(α) is the Laplace exponent of the compound Poisson process with drift pi per unit
time. This means that

κi(α) = piα − λ(1 − Ee−ασ ).

Owing to the linear dependence between theB(i), their LST has the form Ee−sB(1)−tB(2) =
φ(s, t) =: φB(1) (s + p1t/p2).
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• q+(q) is the largest root of the equation κ1(α) = q. Then q+(q(p1 − p2)) solves

p1α − λ(1 − Ee−αp1B
(1)
) = q(p1 − p2).

Note that if we set α = p + q, the above becomes

p1p + p2q − λ(1 − φB(1) (p1p + p1q)) = 0,

or, written in the (s, t) coordinates, this becomes the equation satisfied by s(t) (s and
t are now interchanged). Hence, the relation between the 0s in both notation is s(t) =
p1(α − q) = p1[q+(q(p1 − p2))− q].

The constant κ(0+)′ = p2 − λEB(2) = p2(1 − ρ2) is the probability that the queueing
system is empty in steady state (now the second queue has a higher workload).

In conclusion, (12) written via (13) and (3) in the (s, t) coordinates becomes (7), i.e.

ψ(t, s) = s(1 − ρ2)

s + t − λ(1 − φB(1) (s + p1t/p2))

s − s(t)

−s(t) ,

with the arguments s and t interchanged.

4.2. Relation with work on tandem fluid queues

We now show that the workload model with ordered service times is equivalent to a particular
tandem fluid queue. That is, a model of two queues in series in which the outflow from the first
queue is a fluid, i.e. there is continuous outflow when the server is working (instead of customers
leaving one by one). Such tandem fluid queues have been studied by various authors; see, in
particular, [18]. Consider the following two-station tandem fluid network with independent
compound Poisson input at the two stations (with arrival rate λi and LST of the service times
B∗
i (·), i = 1, 2). Then Theorem 4.1 of [18] gives the LST of the steady-state fluid levels W1

and W2 in the two nodes as

ψW(α1, α2) = E(e−α1W1−α2W2) = (1 − ρ1 − ρ2)α2

φ1(α1)− φ1(η̂2(α2))

α1 − η̂2(α2)

α2 − η̂2(α2)
,

with

• ρi = λiE(Bi),

• φ1(α1) = α1 − η1(α1),

• ηi(αi) = λi(1 − B∗
i (αi)),

• η̂2(α2) the solution of φ1(η̂2(α2)) = η2(α2).

Alternatively, the last relation can also be formulated as follows: η̂2(α2) is the solution of

λ1B
∗
1 (η̂2(α2))+ λ2B

∗
2 (α2) = λ1 + λ2 − η̂2(α2).

This system is related to our model with arrival rateλ = λ1+λ2 and LST of service requirements

φ(s, t) = λ1

λ1 + λ2
B∗

1 (s + t)+ λ2

λ1 + λ2
B∗

2 (s).
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B(2)
λ

B(1) − B(2)

Figure 1: Tandem fluid queue

The corresponding notation is B1
d= B(2) and B2

d= B(1) − B(2) (see Figure 1). HereW1 in
the tandem model corresponds to the workload in the smallest queue in our model andW1 +W2
in the tandem model corresponds to the workload in the largest queue in our model. So we
have

ψ(s, t) = E(e−sV1−tV2) = E(e−s(W1+W2)−tW1)

= ψW(s + t, s)

= (1 − ρ1 − ρ2)s

s + t − λ1(1 − B∗
1 (s + t))− λ2(1 − B∗

2 (s))

s + t − η̂2(s)

s − η̂2(s)
.

Now note that

• The total traffic offered to the largest queue is ρ1 + ρ2, so indeed the factor 1 − ρ1 − ρ2
in [18] corresponds to the factor 1 − ρ1 in (7);

• λ(1 − φ(s, t)) = λ1(1 − B∗
1 (s + t))+ λ2(1 − B∗

2 (s));

• λφ(s, t (s)) = λ1B
∗
1 (s + t (s)) + λ2B

∗
2 (s) = λ1 + λ2 − (s + t (s)), so indeed η̂2(s)

corresponds to our s + t (s).

We conclude that (7) coincides with Theorem 4.1 of [18] in the case of independent compound
Poisson input. Kella’s result is more general in the sense that he has Lévy input instead of
compound Poisson input. Our result is more general in the sense that we have dependent
compound Poisson input.

4.3. Relation with work on priority queues

As already noted in Kella [18], but also in several other places in the literature, the tandem
fluid network described above is also related to a priority queue with preemptive resume
priorities. Hence, the same holds for our workload model. Consider the following model
with two types of customer, where customers of type i arrive according to a Poisson process
with rate λi having service times with LSTB∗

i (·), i = 1, 2. Assume furthermore that customers
of type 1 have preemptive resume priority over customers of type 2. If we denote by Y1 and Y2
the steady-state workloads in the two queues, then Y1 and Y2 are related to W1 and W2 in the
tandem fluid network. The LST of the steady-state workloads in the two queues satisfies

ψY (s, t) = E(e−sY1−tY2) = E(e−sW1−tW2) = E(e−sV2−t (V1−V2)) = ψV (t, s − t),

where again in our model we have to take arrival rate λ = λ1 + λ2 and LST of service
requirements

φ(s, t) = λ1

λ1 + λ2
B∗

1 (s + t)+ λ2

λ1 + λ2
B∗

2 (s).

We conclude that (7) also gives the LST of a priority queue. Again, our result is more general
in the sense that we have dependent compound Poisson input (i.e. we can have arrivals of
customers who have both low and high priority work).
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5. The K-dimensional problem

In this section we consider the K-queue system with simultaneous arrivals. We give the
transform for the steady-state joint workload and we show that the decomposition in Theorem 1
extends to this case if we preserve the ordering between the service requirements/claim sizes.
We use an iterative argument and, for this purpose, the decomposition in Section 3 will be the
starting point; the iteration step is essentially done with the help of Lemma 2 below as a work
conservation identity.

We thus considerK parallel M/G/1 queues, numbered 1 toK , respectively, with simultaneous
(coupled) arrivals and correlated service requirements. We use the same notation as in Section 2.
The LST of the service time/claim size vector is denoted by

φ(s1, . . . , sK) := E(exp[−s1B(1) − · · · − sKB
(K)]).

The essential assumption in the model extends Assumption 2 for the two-dimensional problem:

P(B(1) ≥ B(2) ≥ · · · ≥ B(K)) = 1.

Furthermore, we denote by ρi := λEB(i), i = 1, . . . , K , the load of queue i and we assume
that ρ1 < 1 (hence, ρi < 1 for all i) to assure that all queues can handle the offered work.

Remark 2. As in the two-dimensional case (cf. Remark 1), this model allows for a separate
Poisson arrival stream into queue 1. Merging this separate arrival process with the simultaneous
arrival process, the distribution of (B(2), . . . , B(K)) will have an atom in (0,…,0), which is the
probability that a dedicated Poisson arrival happens instead of a simultaneous arrival.

Similarly, the model allows for simultaneous arrivals at the first j queues only. This can be
achieved by letting the distribution of (B(j+1), . . . , B(K)) have an atom at (0, . . . , 0).

5.1. The LST of (V (1), . . . , V (K))

The K-dimensional Lindley recursion holds for the random variables (V (1)n , . . . , V
(K)
n ) :

(V
(1)
n+1, . . . , V

(K)
n+1) = (max(V (1)n + B(1)n − An, 0), . . . ,max(V (K)n + B(K)n − An, 0)).

For ψn(s1, . . . , sK) := E(exp[−s1V (1)n − · · · − sKV
(K)
n ]), n ≥ 1, the Lindley recursion

gives, after straightforward calculations,

ψn+1(s1, . . . , sK)

=
K∑
j=1

λ

λ− ∑j
i=1 si

[φ(j)(s1, . . . , sj )ψ(j)n (s1, . . . , sj )

− φ(j−1)(s1, . . . , sj−1)ψ
(j−1)
n (s1, . . . , sj−1)] + φ(0)ψ(0)n , (14)

where we have used the following notation for simplicity: ψ(K)n (s1, . . . , sK) := ψn(s1, . . . , sK)

with ψ(0)n := ψn(λ, 0, . . . , 0), and

ψ
(j)
n (s1, . . . , sj ) := ψn

(
s1, . . . , sj , λ−

j∑
i=1

si, 0, . . . , 0︸ ︷︷ ︸
K−j−1 arguments

)
for 1 ≤ j ≤ K − 1.
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We define φ(j)(s1, . . . , sj ) analogously for j = 0, . . . , K . By taking n → ∞ in (14), we
obtain, for ψ(s1, . . . , sK) := limn→∞ ψn(s1, . . . , sK),(

1 − λφ(s1, . . . , sK)

λ− ∑K
i=1 si

)
ψ(s1, . . . , sK)

=
K−1∑
j=0

(
λ

λ− ∑j
i=1 si

− λ

λ− ∑j+1
i=1 si

)
φ(j)(s1, . . . , sj )ψ

(j)(s1, . . . , sj ), (15)

with ψ(j) := limn→∞ ψ
(j)
n and φ(0)ψ(0) = P(V (1) + B(1) ≤ A) = 1 − ρ1.

Formula (15) has a simple recursive structure, and we can rewrite it as

(
1 − λφ(s1, . . . , sK)

λ− ∑K
i=1 si

)
ψ(s1, . . . , sK)

=
(

λ

λ− ∑K−1
i=1 si

− λ

λ− ∑K
i=1 si

)
φ(K−1)(s1, . . . , sK−1)ψ

(K−1)(s1, . . . , sK−1)

+
(

1 − λφ(s1, . . . , sK−1, 0)

λ− ∑K−1
i=1 si

)
ψ(s1, . . . , sK−1, 0). (16)

Denote by

Cj :=
(

1 − λφ(s1, . . . , sj , 0, . . . , 0)

λ− ∑j
i=1 si

)
ψ(s1, . . . , sj , 0, . . . , 0),

and note that ψ(s1, . . . , sj , 0, . . . , 0) is the transform of the workload in the j -dimensional
system obtained by ignoring the last K − j queues, j = 1, . . . , K .

Proposition 2. The LST of the steady-state workload in the K ≥ 3 systems is given by

ψ(s1, . . . , sK) = (1 − ρK)(SK − sK)∑K
i=1 si − λ(1 − φ(s1, . . . , sK))

K−1∏
j=2

1 − ρj

1 − ρj+1

Sj − sj

Sj+1

1 − ρ1

1 − ρ2

s1

S2
, (17)

with Sj = Sj (s1, . . . , sj−1) the unique solution of the equation

λφ(s1, . . . , sj , 0, . . . , 0) = λ−
j∑
i=1

si,

with Re (s1 + · · · + sj−1 + Sj (s1, . . . , sj−1)) > 0 for all j = 2, . . . , K .

Proof. The key remark is that sK is not among the arguments of the functionsψ(j) that appear
on the right-hand side of (15) or (16). Similarly as in Section 3, Rouché’s theorem applied to
s = s1+· · ·+sK−1 and t = sK yields the existence of a unique solutionSK = SK(s1, . . . , sK−1)

of the equation

λφ(s1, . . . , sK) = λ−
K∑
i=1

si,
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such that SK(s1, . . . , sK−1)+ ∑K−1
i=1 si has positive real part. Hence, the hypersurface given

by SK = SK(s1, . . . , sK−1) is contained in the regularity domain ofψ(s1, . . . , sK), and then the
right-hand side of (16) must be 0. This gives the following relation for ψ(K−1)(s1, . . . , sK−1):

(φ(K−1)ψ(K−1))(s1, . . . , sK−1) = (λ− ∑K−1
i=1 si)φ(s1, . . . , sK−1, SK)

SK
CK−1.

By substituting this into (16), we obtain the recursion

CK = λ− ∑K−1
i=1 si

λ− ∑K
i=1 si

SK − sK

SK
CK−1

with initial condition

C2 = −(1 − ρ1)
s1

λ− s1 − s2

S2 − s2

S2
,

which follows from (7). From this, we obtain (17), after rearranging the factors. The proof is
complete.

5.2. Interpretation of the Rouché zero

It is worthwhile to change the coordinates: (s1, s2, . . . , sK) → (s1, s2, . . . , sK−1,
∑K
i=1 si).

We can rewrite

φ(s1, . . . , sK) = E exp

[
−s1(B(1) − B(K))− · · · − sK−1(B

(K−1) − B(K))−
( K∑
i=1

si

)
B(K)

]
.

Let us denote it by φ̃(s1, . . . , sK−1,
∑K
i=1 si). This is the transform of the extra service time

(relative to the shortest queue) in the first K − 1 queues, together with the service time in the
shortest queue. It turns out there is a connection between sK(s1, . . . , sK−1) and the joint extra
work in systems 1 to K − 1 at the end of a busy period in system K . Let us denote this extra
work by (U1, U2, . . . , UK−1), with LST U∗

K(s1, . . . , sK−1), and let F(x1, x2, . . . , xK) be the
CDF of (B(1) − B(K), . . . , B(K−1) − B(K), B(K)). Then, by a similar argument as that leading
to (8), U∗

K(s1, . . . , sK−1) satisfies the identity

U∗
K(s1, . . . , sK−1) =

∫
exp

[
−
K−1∑
i=1

sixi

] ∞∑
n=0

(λxK)
n

n! e−λxK [U∗
K(s1, . . . , sK−1)]n

× F(dx1 · · · dxK)

= φ̃(s1, . . . , sK−1, λ[1 − U∗
K(s1, . . . , sK−1)]). (18)

Comparing this with the identity for the Rouché zero,

λ− (s1 + · · · + sK−1 + SK) = λφ̃(s1, . . . , sK−1, s1 + · · · + sK−1 + SK),

gives a relation analogous to (9), i.e.

λU∗
K(s1, . . . , sK−1) = λ− (s1 + · · · + sK−1 + SK), (19)

which follows because the Rouché zero is unique.
Let us fix our attention on the case K = 3 for the moment. Then identity (17) becomes

ψ(s1, s2, s3) = (1 − ρ3)(S3 − s3)

s1 + s2 + s3 − λ[1 − φ(s1, s2, s3)]
1 − ρ2

1 − ρ3

S2 − s2

S3

1 − ρ1

1 − ρ2

s1

S2
. (20)
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Figure 2: Work in the original system (left) and in the virtual system (right).

5.3. Work conservation

We would like to give a probabilistic interpretation of (20). In order to achieve this, we start
by considering the joint extra work in queues 1 and 2 at the end of a busy period in queue 3. This
has LST U∗

3 (s1, s2) as input in a two-dimensional system with simultaneous Poisson arrivals,
which is obtained by contracting the busy cycles in queue 3. We call this the two-dimensional
virtual system. Note that the interarrival times in the virtual system are precisely the idle periods
in queue 3.

For this construction, the key observation is that the steady-state extra work in virtual queue 1
at the end of the busy period in virtual queue 2 is the same as the extra work in initial queue 1
at the end of the busy period in original queue 2. In analytic form, let Ũ∗

2 (s1) be the LST of
the extra work in the virtual system and let U∗

2 (s1) be the LST of the extra work in the original
system, see Figure 2.

Lemma 2. It holds that
Ũ∗

2 (s1) = U∗
2 (s1).

Proof. We begin by noting that the extra work (U(1),1, U(2),1) in the first two queues at the
end of a busy period in queue 3 satisfies the inequality U(1),1 ≥ U(2),1 a.s. Since this is the
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input in the virtual system, from Proposition 1, Ũ∗
2 (s1) satisfies identity (8) with U∗

3 (s1, s2)

instead of φ(s1, s2):
U∗

3 (s1, λ[1 − Ũ∗
2 (s1)] − s1) = Ũ∗

2 (s1). (21)

At the same time, via (18), U∗
3 (s1, s2) satisfies

φ(s1, s2, λ(1 − U∗
3 (s1, s2))− s1 − s2) = U∗

3 (s1, s2).

If we substitute this fixed point identity into (21), we have

φ(s1, λ(1 − Ũ∗
2 (s1))− s1, 0) = Ũ∗

2 (s1).

On the other hand, this is also identity (8) satisfied byU∗
2 (s1) in the two-dimensional system

obtained by ignoring the last queue. Hence, from the uniqueness of Rouché’s zero, Ũ∗
2 (s1) =

U∗
2 (s1) (See Figure 2). This completes the proof.

We can rewrite (17) using (19):

ψ(s1, s2, s3) = (1 − ρ3)
s1 + s2 + s3 − λ(1 − U∗

3 (s1, s2))

s1 + s2 + s3 − λ(1 − φ(s1, s2, s3))

× 1 − ρ2

1 − ρ3

s1 + s2 − λ(1 − U∗
2 (s1))

s1 + s2 − λ(1 − U∗
3 (s1, s2))

1 − ρ1

1 − ρ2

s1

s1 − λ(1 − Ũ∗
2 (s1))

. (22)

Note that the atom (1 − ρ1)/(1 − ρ2) above is the conditional probability that queue 1 is
empty, given that queue 2 is empty; and, similarly, for (1 − ρ2)/(1 − ρ3). In addition, the last
factor in (22) is the Pollaczek–Khinchine representation for an M/G/1 queue with service times
having LST Ũ∗

2 (s1). Now we are ready to give the main result of this section.

Theorem 2. In steady state, the joint workload distribution decomposes as an independent
sum:

(V (1), V (2), V (3))
d= (Ṽ (1),1, Ṽ (2),1, V (3))+ (Ṽ (1),2, V (2),2, 0)+ (V (1),3, 0, 0).

The first term in the sum represents the steady-state distribution of the modified joint workload
process obtained by removing the extra work in the first two queues at the end of a busy period
in the third queue. The second term is the workload in the first two queues obtained by removing
the extra work in the first queue at the end of a busy cycle in the second queue. Finally, the third
term represents the workload in the virtual M/G/1 queue with input distributed as the extra
work in queue 1, at the end of a busy period in queue 2.

Proof. Consider the modified work process that evolves in steady state as

(Ṽ (1),1, Ṽ (2),1, V (3))
d= (Ṽ (1),1 + B(1) − A, Ṽ (2),1 + B(2) − A,V (3) + B(3) − A)

if A < V (3) + B(3), and (Ṽ (1),1, Ṽ (2),1, V (3)) = (0, 0, 0) otherwise.
By similar computations as those leading to (10), we obtain

ψ̃(s1, s2, s3) = (1 − ρ3)
s1 + s2 + s3 − λ(1 − U∗

3 (s1, s2))

s1 + s2 + s3 − λ(1 − φ(s1, s2, s3))
.
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This is the first factor in (22). For the second factor, consider the following modified virtual
workload process that evolves in steady state as

(Ṽ (1),2, V (2),2, 0)

d=
{
(Ṽ (1),2 + U(1),1 − A,V (2),2 + U(2),1 − A, 0) if A < V (2),2 + U(2),1,

(0, 0, 0) if A ≥ V (2),2 + U(2),1,

with (U(1),1, U(2),1) the extra work vector in the first two queues at the end of a busy period in
queue 3. Here we remove the excess workload in virtual queue 1 at the end of the busy period
in virtual queue 2, which, by Lemma 2, is the same as in the original system. In terms of LSTs,
this becomes

ψ̃1(s1, s2) = 1 − ρ1

1 − ρ2

s1 + s2 − λ(1 − U∗
2 (s1))

s1 + s2 − λ(1 − U∗
3 (s1, s2))

.

Finally, the third factor in (22) is the Pollaczek–Khinchine representation of the steady-state
workload in the M/G/1 queue with service time distributed as the extra work in queue 1 at the
end of a busy period in queue 2. This completes the proof.

These considerations can be iterated now for the general K-dimensional system.

Corollary 1. The steady-state joint workload in the K systems decomposes into the independent
sum

(V (1), . . . , V (K))
d= (Ṽ (1),1, . . . , Ṽ (K−1),1, V (K))+ (Ṽ (1),2, . . . , Ṽ (K−2),2, V (K−1),2, 0)

+ · · · + (Ṽ (1),K−1, V (2),K−1, 0, . . . , 0)+ (V (1),K, 0, . . . , 0),

where the j th term in the sum satisfies the identity in distribution (j = 2, . . . , K):

(Ṽ (1),j , Ṽ (2),j , . . . , Ṽ (K−j),j , V (K−j+1),j , 0, . . . , 0)
d= (Ṽ (1),j + U(1),j−1 − A, Ṽ (2),j + U(2),j−1 − A, . . . ,

V (K−j+1),j + U(K−j+1),j−1 − A, 0, . . . , 0) if A ≤ V (K−j+1),j + U(K−j+1),j−1,

and (0, . . . , 0) otherwise. Here U(i),j is the extra workload in queue i at the end of a busy
period in queue (K − j + 1) for i > K − j + 1.

6. The general two-dimensional workload/reinsurance problem

In this section we consider the general two-dimensional workload problem: pairs of cus-
tomers arrive simultaneously at two parallel queuesQ1 andQ2 according to a Poisson(λ) pro-
cess, the nth pair requiring service times (B(1)n , B

(2)
n )with LST φ(s, t). We are interested in the

steady-state workload vector (V (1), V (2)) with LST ψ(s, t). By the duality that is exposed in
Section 2,ψ(s, t) also is the LT (with respect to u1 and u2) of the probability that both portfolios
of an insurance company with simultaneous claims (B(1)n , B

(2)
n ), with initial capital u1 and u2,

will survive.
In Section 3 we determined ψ(s, t) for the special case that P(B(1) ≥ B(2)) = 1. We now

show how the general case—B
(1)
n and B(2)n having an arbitrary joint distribution—has been

solved in the literature (with the solution of that special case emerging as a degenerate solution).
Baccelli [4], De Klein [12], and Cohen [10] treated the two-dimensional workload problem with
simultaneous arrivals in increasing generality. The starting point in those three studies is the
following functional equation for ψ(s, t), which is derived by studying the two-dimensional
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Markovian workload process during an infinitesimal amount of time t :

K(s, t)ψ(s, t) = tψ1(s)+ sψ2(t), Re s, t ≥ 0. (23)

Here the so-called kernel K(s, t) is given by

K(s, t) := s + t − λ(1 − φ(s, t)),

and

ψ1(s) := E[e−sV1(V2 = 0)], ψ2(t) := E[e−tV2(V1 = 0)],
with (·) denoting an indicator function.

Remark 3. In the special case of Section 3, with P(B(1) ≥ B(2)) = 1, we have ψ2(t) ≡
P(V1 = 0), because V2 cannot be positive when V1 = 0. It then remains to find ψ1(s). This
is done by observing (see Section 3) that, for all s with Re s > 0, there is a unique zero t (s)
of the kernel, with Re t (s) > Re (−s). This immediately yields ψ1(s) = −sP(V1 = 0)/t (s),
which is readily seen to be in agreement with (7).

Equation (4), which was obtained by studying the workloads at arrival epochs (i.e. the waiting
times; by the PASTA property, they have the same distribution as the steady-state workloads),
looks slightly different from (23), but, using (6), it is readily seen that they are equivalent.

Globally speaking, the essential steps in [4], [10], and [12] are the following.
Step 1: find a suitable set of zeroes (ŝ, t̂ ), with Re ŝ ≥ 0, Re t̂ ≥ 0, of the kernel K(s, t),

i.e.K(ŝ, t̂) = 0. Because ψ(s, t) is regular for all (s, t) with Re s, t ≥ 0, we must have, for all
these zeroes,

t̂ψ1(ŝ) = −ŝψ2(t̂).

It is further observed that ψ1(s) is regular for Re s > 0 and continuous for Re s ≥ 0, and that
ψ2(t) is regular for Re t > 0 and continuous for Re t ≥ 0.

Step 2: formulate a boundary-value problem forψ1(s) andψ2(t). There are various types of
boundary-value problem, such as the Riemann and the Wiener–Hopf boundary-value problems.
Typically, they ask to determine two functions P1(·) and P2(·), which satisfy a relation on a
particular boundaryB, whileP1(·) is regular in the interiorB+ andP2(·) is regular in the exterior
B−. Here B could be the unit circle (Riemann boundary-value problem), or the imaginary axis
(Wiener–Hopf boundary-value problem; B+ now is the left-half plane). We refer the reader
to [17] and [20] for excellent expositions of such boundary-value problems and their variants,
such as the boundary-value problem with a shift. The latter occurs in the approach of De
Klein [12]; see below.

Step 3: solve the boundary-value problem for ψ1(·) and ψ2(·) with boundary B. If B is
a smooth closed contour that is not a circle, the use of a conformal mapping from B to the
unit circle C is required to arrive at a Riemann boundary-value problem for the unit circle, the
solution of which can be found in [17] and [20]. Thus, we obtainψ1(s) andψ2(t) inside certain
regions; subsequently, one may use analytic continuation to find them in Re s, t ≥ 0. Finally,
ψ(s, t) follows from (23).

Remark 4. Application of the boundary value method in queueing theory was pioneered by
Fayolle and Iasnogorodski [13]. They used this method to analyze the joint queue length
process in two coupled processors, viz. two M/M/1 queues which operate at unit speeds when
the other queue is not empty, but at different speeds when the other queue is empty. The method
was subsequently developed in [11] for a large class of two-dimensional random walks; various
queueing applications were also discussed in [11]. See [9] for a survey of the method in queueing
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theory, and see [10] and [14], for two monographs which have further developed the theory
of two-dimensional random walks. Part IV of [10] explores the analysis of N -dimensional
random walks with N > 2. Results for N > 2 are very limited, and it seems fair to conclude
that the boundary value method is, apart from a few special cases, restricted to two-dimensional
random walks.

Remark 5. We strongly believe that the boundary value method also has a large potential in the
analysis of two-dimensional risk models. Owing to the duality between the reinsurance model
and the two-queue model with simultaneous arrivals, the publications [4], [10], and [12], are
of immediate relevance to the reinsurance problem. These publications seem unknown in the
insurance community (see, e.g. Chan et al. [8], who posed the two-dimensional risk problem
and stopped at (23)—where [4], [10], and [12], begin). They have remained largely unnoticed
even in the queueing community, perhaps because of their complexity and because [4] and [12]
did not appear in the open literature.

The approaches in [4], [10], and [12] are successively exposed at some length in the full,
preprint version of this paper [7].

Remark 6. It should be observed that Baccelli [4], Cohen [10], and De Klein [12] all also solve
the more complicated transient problem of determining the joint time-dependent distribution
of the two workloads.

7. Conclusions and future work

We have studied a multivariate queueing system, which is shown to correspond to a dual
risk process with multiple lines of insurance that receive coupled claims. We find the LST of
the multivariate workload distribution in the case in which the service requirements are ordered
with probability 1. Duality then yields the Laplace transform of the survival probabilities.
For general service requirement (respectively claim size) vectors the workload (respectively
ruin) problem can be solved in the two-dimensional case, by solving a Riemann boundary-value
problem. For dimensionK > 2, the problem seems analytically intractable in its full generality.
That raises the need for approximations and asymptotics. It would in particular be interesting
to obtain explicit multidimensional tail asymptotics of workloads and ruin probabilities, both
for light-tailed and heavy-tailed service requirements (or claim sizes). Even forK = 2 queues,
this is already quite challenging. Moreover, a wide range of different cases must be studied,
giving rise to quite different techniques and results. Therefore, we intend to devote a separate
study to tail asymptotics.
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