2 research outputs found

    Neural Network Compensation Control for Output Power Optimization of Wind Energy Conversion System Based on Data-Driven Control

    Get PDF
    Due to the uncertainty of wind and because wind energy conversion systems (WECSs) have strong nonlinear characteristics, accurate model of the WECS is difficult to be built. To solve this problem, data-driven control technology is selected and data-driven controller for the WECS is designed based on the Markov model. The neural networks are designed to optimize the output of the system based on the data-driven control system model. In order to improve the efficiency of the neural network training, three different learning rules are compared. Analysis results and SCADA data of the wind farm are compared, and it is shown that the method effectively reduces fluctuations of the generator speed, the safety of the wind turbines can be enhanced, the accuracy of the WECS output is improved, and more wind energy is captured

    LMI Approach to Exponential Stability and Almost Sure Exponential Stability for Stochastic Fuzzy Markovian-Jumping Cohen-Grossberg Neural Networks with Nonlinear p-Laplace Diffusion

    Get PDF
    The robust exponential stability of delayed fuzzy Markovian-jumping Cohen-Grossberg neural networks (CGNNs) with nonlinear p-Laplace diffusion is studied. Fuzzy mathematical model brings a great difficulty in setting up LMI criteria for the stability, and stochastic functional differential equations model with nonlinear diffusion makes it harder. To study the stability of fuzzy CGNNs with diffusion, we have to construct a Lyapunov-Krasovskii functional in non-matrix form. But stochastic mathematical formulae are always described in matrix forms. By way of some variational methods in W1,p(Ω), Itô formula, Dynkin formula, the semi-martingale convergence theorem, Schur Complement Theorem, and LMI technique, the LMI-based criteria on the robust exponential stability and almost sure exponential robust stability are finally obtained, the feasibility of which can efficiently be computed and confirmed by computer MatLab LMI toolbox. It is worth mentioning that even corollaries of the main results of this paper improve some recent related existing results. Moreover, some numerical examples are presented to illustrate the effectiveness and less conservatism of the proposed method due to the significant improvement in the allowable upper bounds of time delays
    corecore