5 research outputs found

    New High-Speed Directional Relay Based on Wireless Sensor Network for Smart Grid Protection

    Get PDF
    The production of energy from water represents large amounts of clean and renewable energy. However, only 30% of this energy has been developed so far. Hydropower, particularly hydropower plants, is not only environmentally friendly but also economical, and operates more efficiently than any other renewable energy system. Hydropower plants are largely automated and have relatively low operating costs. The main components of the power system must be continuously monitored and protected to maintain the quality and reliability of the power source. This task is provided by the data collection, monitoring and protection system. Turbines must be protected not only by short circuits but also by abnormal conditions. The proposed protection has been designed to avoid damaging the original power (motor or turbine), this usually happens when the generator fails, and the machine operates as a synchronous motor connected to the power system. In this case, the generator becomes an active load, causing a rise in temperature and severe damage to the main turbine, and hence it becomes a need to quickly detect these conditions. This study proposes a new controller for Neuro-Fuzzy to prevent reverse power flow and to keep the quality and reliability of supply. Fuzzy system network has attracted various scientific and engineering researchers. The new feature of this work is to adjust the membership function as a reverse mechanism derived of the Fuzzy Logic Controller. The smart meter network is the basis of the smart grid. In this study, smart grid meters were implemented using ZigBee technology based on wireless sensor networks. The ZigBee network of wireless sensors due to its low battery, low power consumption, become more useful than other wireless communication systems to provide a high-performance measurement. This study shows the ZigBee network using the OPNET simulation. Depending on the performance, parameters were analysed to understand the operating characteristics of the star, tree, and mesh

    A technical perspective on integrating artificial intelligence to solid-state welding

    Get PDF
    The implementation of artificial intelligence (AI) techniques in industrial applications, especially solid-state welding (SSW), has transformed modeling, optimization, forecasting, and controlling sophisticated systems. SSW is a better method for joining due to the least melting of material thus maintaining Nugget region integrity. This study investigates thoroughly how AI-based predictions have impacted SSW by looking at methods like Artificial Neural Networks (ANN), Fuzzy Logic (FL), Machine Learning (ML), Meta-Heuristic Algorithms, and Hybrid Methods (HM) as applied to Friction Stir Welding (FSW), Ultrasonic Welding (UW), and Diffusion Bonding (DB). Studies on Diffusion Bonding reveal that ANN and Generic Algorithms can predict outcomes with an accuracy range of 85 – 99%, while Response Surface Methodology such as Optimization Strategy can achieve up to 95 percent confidence levels in improving bonding strength and optimizing process parameters. Using ANNs for FSW gives an average percentage error of about 95%, but using metaheuristics refined it at an incrementally improved accuracy rate of about 2%. In UW, ANN, Hybrid ANN, and ML models predict output parameters with accuracy levels ranging from 85 to 96%. Integrating AI techniques with optimization algorithms, for instance, GA and Particle Swarm Optimization (PSO) significantly improves accuracy, enhancing parameter prediction and optimizing UW processes. ANN’s high accuracy of nearly 95% compared to other techniques like FL and ML in predicting welding parameters. HM exhibits superior precision, showcasing their potential to enhance weld quality, minimize trial welds, and reduce costs and time. Various emerging hybrid methods offer better prediction accuracy

    Design and Experimental Realization of Adaptive Control Schemes for an Autonomous Underwater Vehicle

    Get PDF
    Research on Autonomous Underwater Vehicle(AUV) has attracted increased attention of control engineering community in the recent years due to its many interesting applications such as in Defense organisations for underwater mine detection, region surveillance, oceanography studies, oil/gas industries for inspection of underwater pipelines and other marine related industries. However, for the realization of these applications, effective motion control algorithms need to be developed. These motion control algorithms require mathematical representation of AUV which comprises of hydrodynamic damping, Coriolis terms, mass and inertia terms etc. To obtain dynamics of an AUV, different analytical and empirical methods are reported in the literature such as tow tank test, Computational Fluid Dynamics (CFD) analysis and on-line system identification. Among these methods, tow-tank test and CFD analysis provide white-box identified model of the AUV dynamics. Thus, the control design using these methods are found to be ineffective in situation of change in payloads of an AUV or parametric variations in AUV dynamics. On the other hand, control design using on-line identification, the dynamics of AUV can be obtained at every sampling time and thus the aforesaid parametric variations in AUV dynamics can be handled effectively. In this thesis, adaptive control strategies are developed using the parameters of AUV obtained through on-line system identification. The proposed algorithms are verified first through simulation and then through experimentation on the prototype AUV. Among various motion control algorithms, waypoint tracking has more practical significance for oceanographic surveys and many other applications. In order to implement, waypoint motion control schemes, Line-of-Sight (LoS) guidance law can be used which is computationally less expensive. In this thesis, adaptive control schemes are developed to implement LoS guidance for an AUV for practical realization of the control algorithm. Further, in order to realize the proposed control algorithms, a prototype AUV is developed in the laboratory. The developed AUV is a torpedo-shaped in order to experience low drag force, underactuated AUV with a single thruster for forward motion and control planes for angular motion. Firstly, the AUV structure such as nose profile, tail profile, hull section and control planes are designed and developed. Secondly, the hardware configuration of the AUV such as sensors, actuators, computational unit, communication module etc. are appropriately selected. Finally, a software framework called Robot Operating System (ROS) is used for seamless integration of various sensors, actuators with the computational unit. ROS is a software platform which provides right platform for the implementation of the control algorithms using the sensor data to achieve autonomous capability of the AUV. In order to develop adaptive control strategies, the unknown dynamics of the AUV is identified using polynomial-based Nonlinear Autoregressive Moving Average eXogenous (NARMAX) model structure. The parameters of this NARMAX model structure are identified online using Recursive Extended Least Square (RELS) method. Then an adaptive controller is developed for realization of the LoS guidance law for an AUV. Using the kinematic equation and the desired path parameters, a Lyapunov based backstepping controller is designed to obtain the reference velocities for the dynamics. Subsequently, a self-tuning PID controller is designed for the AUV to track these reference velocities. Using an inverse optimal control technique, the gains of the selftuning PID controller are tuned on-line. Although, this algorithm is computationally less expensive but there lie issues such as actuator constraints and state constraints which need to be resolved in view of practical realization of the control law. It is also observed that the proposed NARMAX structure of the AUV consists of redundant regressor terms. To alleviate the aforesaid limitations of the Inverse optimal self-tuning control scheme, a constrained adaptive control scheme is proposed that employs a minimum representation of the NARMAX structure (MR-NARMAX) for capturing AUV dynamics. The regressors of the MR-NARMAX structure are identified using Forward Regressor Orthogonal Least Square algorithm. Further, the parameters of this MRNARMAX model structure of the AUV are identified at every sampling time using RELS algorithm. Using the desired path parameters and the identified dynamics, an error objective function is defined which is to be minimized. The minimization problem where the objective function with the state and actuator constraints is formulated as a convex optimization problem. This optimization problem is solved using quadratic programming technique. The proposed MR-NARMAX based adaptive control is verified in the simulation and then on the prototype AUV. From the obtained results it is observed that this algorithm provides successful tracking of the desired heading. But, the proposed control algorithm is computational expensive, as an optimization problem is to be solved at each sampling instant. In order to reduce the computational time, an explicit model predictive control strategy is developed using the concept of multi-parametric programming. A Lyapunov based backstepping controller is designed to generate desired yaw velocity in order to steer the AUV towards the desired path. This explicit model predictive controller is designed using the identified NARMAX model for tracking the desired yaw velocity. The proposed explicit MPC algorithm is implemented first in simulation and then in the prototype AUV. From the simulation and experimental results, it is found that this controller has less computation time and also it considers both the state and actuator constraints whilst exhibiting good tracking performance

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study
    corecore