15 research outputs found

    Efficient cyclic reduction for QBDs with rank structured blocks

    Full text link
    We provide effective algorithms for solving block tridiagonal block Toeplitz systems with m×mm\times m quasiseparable blocks, as well as quadratic matrix equations with m×mm\times m quasiseparable coefficients, based on cyclic reduction and on the technology of rank-structured matrices. The algorithms rely on the exponential decay of the singular values of the off-diagonal submatrices generated by cyclic reduction. We provide a formal proof of this decay in the Markovian framework. The results of the numerical experiments that we report confirm a significant speed up over the general algorithms, already starting with the moderately small size m≈102m\approx 10^2

    Occupation densities in solving exit problems for Markov additive processes and their reflections

    Get PDF
    This paper solves exit problems for spectrally negative Markov additive processes and their reflections. A so-called scale matrix, which is a generalization of the scale function of a spectrally negative \levy process, plays a central role in the study of exit problems. Existence of the scale matrix was shown in Thm. 3 of Kyprianou and Palmowski (2008). We provide a probabilistic construction of the scale matrix, and identify the transform. In addition, we generalize to the MAP setting the relation between the scale function and the excursion (height) measure. The main technique is based on the occupation density formula and even in the context of fluctuations of spectrally negative L\'{e}vy processes this idea seems to be new. Our representation of the scale matrix W(x)=e^{-\Lambda x}\eL(x) in terms of nice probabilistic objects opens up possibilities for further investigation of its properties

    A Linear Programming Approach to Error Bounds for Random Walks in the Quarter-plane

    Full text link
    We consider the approximation of the performance of random walks in the quarter-plane. The approximation is in terms of a random walk with a product-form stationary distribution, which is obtained by perturbing the transition probabilities along the boundaries of the state space. A Markov reward approach is used to bound the approximation error. The main contribution of the work is the formulation of a linear program that provides the approximation error

    Matrix geometric approach for random walks: stability condition and equilibrium distribution

    Get PDF
    In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix R\mathbf{R} appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix R\mathbf{R}

    A computational framework for two-dimensional random walks with restarts

    Full text link
    The treatment of two-dimensional random walks in the quarter plane leads to Markov processes which involve semi-infinite matrices having Toeplitz or block Toeplitz structure plus a low-rank correction. Finding the steady state probability distribution of the process requires to perform operations involving these structured matrices. We propose an extension of the framework of [5] which allows to deal with more general situations such as processes involving restart events. This is motivated by the need for modeling processes that can incur in unexpected failures like computer system reboots. Algebraically, this gives rise to corrections with infinite support that cannot be treated using the tools currently available in the literature. We present a theoretical analysis of an enriched Banach algebra that, combined with appropriate algorithms, enables the numerical treatment of these problems. The results are applied to the solution of bidimensional Quasi-Birth-Death processes with infinitely many phases which model random walks in the quarter plane, relying on the matrix analytic approach. This methodology reduces the problem to solving a quadratic matrix equation with coefficients of infinite size. We provide conditions on the transition probabilities which ensure that the solution of interest of the matrix equation belongs to the enriched algebra. The reliability of our approach is confirmed by extensive numerical experimentation on some case studies
    corecore