32 research outputs found

    Recommending Items in Social Tagging Systems Using Tag and Time Information

    Full text link
    In this work we present a novel item recommendation approach that aims at improving Collaborative Filtering (CF) in social tagging systems using the information about tags and time. Our algorithm follows a two-step approach, where in the first step a potentially interesting candidate item-set is found using user-based CF and in the second step this candidate item-set is ranked using item-based CF. Within this ranking step we integrate the information of tag usage and time using the Base-Level Learning (BLL) equation coming from human memory theory that is used to determine the reuse-probability of words and tags using a power-law forgetting function. As the results of our extensive evaluation conducted on data-sets gathered from three social tagging systems (BibSonomy, CiteULike and MovieLens) show, the usage of tag-based and time information via the BLL equation also helps to improve the ranking and recommendation process of items and thus, can be used to realize an effective item recommender that outperforms two alternative algorithms which also exploit time and tag-based information.Comment: 6 pages, 2 tables, 9 figure

    Final report, independent Study during Fall 2009 "Improving Collaborative Filtering in Social Tagging Systems for the Recommendation of Scientific Articles"

    Get PDF
    This report describes our study of different ways to improve existing collaborative filtering techniques in order to recommend scientific articles. Using data crawled from CiteUlike, a collaborative tagging service for academic purposes, we compared the classical user-based collaborative filtering algorithm as described by Schafer et al. [2], with two enhanced variations: 1) using a tag-based similarity calculation, to avoid depending on ratings to find the neighborhood of a user, and 2) incorporate the amount of raters in the final recommendation ranking to decrease the noise of items that have been rated by too few users. We provide a discussion of our results, describing the dataset and highlighting our findings about applying collaborative filtering on folksonomies instead of the classic bipartite user-item network, and providing guidelines of our future research

    Effective Retrieval of Resources in Folksonomies Using a New Tag Similarity Measure

    Full text link
    Social (or folksonomic) tagging has become a very popular way to describe content within Web 2.0 websites. However, as tags are informally defined, continually changing, and ungoverned, it has often been criticised for lowering, rather than increasing, the efficiency of searching. To address this issue, a variety of approaches have been proposed that recommend users what tags to use, both when labeling and when looking for resources. These techniques work well in dense folksonomies, but they fail to do so when tag usage exhibits a power law distribution, as it often happens in real-life folksonomies. To tackle this issue, we propose an approach that induces the creation of a dense folksonomy, in a fully automatic and transparent way: when users label resources, an innovative tag similarity metric is deployed, so to enrich the chosen tag set with related tags already present in the folksonomy. The proposed metric, which represents the core of our approach, is based on the mutual reinforcement principle. Our experimental evaluation proves that the accuracy and coverage of searches guaranteed by our metric are higher than those achieved by applying classical metrics.Comment: 6 pages, 2 figures, CIKM 2011: 20th ACM Conference on Information and Knowledge Managemen

    CFUI: Collaborative Filtering With Unlabeled Items

    Get PDF
    As opposed to Web search, social tagging can be considered an alternative technique tapping into the wisdom of the crowd for organizing and discovering information on the Web. Effective tag-based recommendation of information items is critical to the success of this social information discovery mechanism. Over the past few years, there have been a growing number of studies aiming at improving the item recommendation quality of collaborative filtering (CF) methods by leveraging tagging information. However, a critical problem that often severely undermines the performance of tag-based CF methods, i.e., sparsity of user-item and user-tag interactions, is still yet to be adequately addressed. In this paper, we propose a novel learning framework, which deals with this data sparsity problem by making effective use of unlabeled items and propagating users’ preference information between the item space and the tag space. Empirical evaluation using real-world tagging data demonstrates the utility of the proposed framework

    Recommending research colloquia: A study of several sources for user profiling

    Get PDF
    The study reported in this paper is an attempt to improve content-based recommendation in CoMeT, a social system for sharing information about research colloquia in Carnegie Mellon and University of Pittsburgh campuses. To improve the quality of recommendation in CoMeT, we explored three additional sources for building user profiles: tags used by users to annotate CoMeT's talks, partial content of CiteULike papers bookmarked by users, and tags used to annotate CiteULike papers. We also compare different tag integration models to study the impact of information fusion on recommendations outcome. The results demonstrate that information encapsulated in CiteULike bookmarks generally helps to improve several aspects of recommendation. The addition of tags by fusing them into keyword profiles helps to improve precision and novelty of recommendation, but may harm systems ability to recommend generally interesting talks. The effects of tags and bookmarks appeared to be stackable. © 2010 ACM

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0
    corecore