122,222 research outputs found

    Collaborative OLAP with Tag Clouds: Web 2.0 OLAP Formalism and Experimental Evaluation

    Full text link
    Increasingly, business projects are ephemeral. New Business Intelligence tools must support ad-lib data sources and quick perusal. Meanwhile, tag clouds are a popular community-driven visualization technique. Hence, we investigate tag-cloud views with support for OLAP operations such as roll-ups, slices, dices, clustering, and drill-downs. As a case study, we implemented an application where users can upload data and immediately navigate through its ad hoc dimensions. To support social networking, views can be easily shared and embedded in other Web sites. Algorithmically, our tag-cloud views are approximate range top-k queries over spontaneous data cubes. We present experimental evidence that iceberg cuboids provide adequate online approximations. We benchmark several browser-oblivious tag-cloud layout optimizations.Comment: Software at https://github.com/lemire/OLAPTagClou

    Transitions between homophilic and heterophilic modes of cooperation

    Full text link
    Cooperation is ubiquitous in biological and social systems. Previous studies revealed that a preference toward similar appearance promotes cooperation, a phenomenon called tag-mediated cooperation or communitarian cooperation. This effect is enhanced when a spatial structure is incorporated, because space allows agents sharing an identical tag to regroup to form locally cooperative clusters. In spatially distributed settings, one can also consider migration of organisms, which has a potential to further promote evolution of cooperation by facilitating spatial clustering. However, it has not yet been considered in spatial tag-mediated cooperation models. Here we show, using computer simulations of a spatial model of evolutionary games with organismal migration, that tag-based segregation and homophilic cooperation arise for a wide range of parameters. In the meantime, our results also show another evolutionarily stable outcome, where a high level of heterophilic cooperation is maintained in spatially well-mixed patterns. We found that these two different forms of tag-mediated cooperation appear alternately as the parameter for temptation to defect is increased.Comment: 16 pages, 7 figure

    Clustering of tag-induced sub-graphs in complex networks

    Full text link
    We study the behavior of the clustering coefficient in tagged networks. The rich variety of tags associated with the nodes in the studied systems provide additional information about the entities represented by the nodes which can be important for practical applications like searching in the networks. Here we examine how the clustering coefficient changes when narrowing the network to a sub-graph marked by a given tag, and how does it correlate with various other properties of the sub-graph. Another interesting question addressed in the paper is how the clustering coefficient of the individual nodes is affected by the tags on the node. We believe these sort of analysis help acquiring a more complete description of the structure of large complex systems

    Video semantic clustering with sparse and incomplete tags

    Get PDF
    © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Clustering tagged videos into semantic groups is important but challenging due to the need for jointly learning correlations between heterogeneous visual and tag data. The task is made more difficult by inherently sparse and incomplete tag labels. In this work, we develop a method for accurately clustering tagged videos based on a novel Hierarchical-Multi- Label Random Forest model capable of correlating structured visual and tag information. Specifically, our model exploits hierarchically structured tags of different abstractness of semantics and multiple tag statistical correlations, thus discovers more accurate semantic correlations among different video data, even with highly sparse/incomplete tags

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change
    corecore